Disaster Risk Management benefits from innovative techniques including AI and Multi Sensor Fusion. The Firefguard Approach uses such technologies to improve the Wildfire Management works in Saxony, Eastern Germany by supporting standing efforts in Early Warning, Disaster Response and Monitoring. Unmanned Aerial Systems (UAS) play a vital role in providing real-time information via a 5G network to a central information management system that delivers geospatial information to response teams. This study highlights the potential of combining UAS, AI, geospatial solutions and existing data for real-time wildfire monitoring and risk assessment systems.
Dredging and reclamation operations are pivotal aspects of coastal engineering and land development. Within these tasks lie potential hazards for personnel operating dredging machinery and working within reclamation zones. Due to the specialized nature of the work environment, which deviates from conventional workplace settings, the risk of workplace accidents is significantly heightened. The aim of this study is to conduct a comprehensive risk analysis of the safety aspects related to dredging and reclamation activities, with the goal of enhancing safety and minimizing the frequency and severity of potential dangers. This research comprises a thorough risk analysis, integrating meticulous hazard identification from sample projects and literature reviews. It involves risk assessment by gathering insights from experts with direct working experience and aims to assess potential risks. The study focuses on defining effective risk management strategies, exemplified through a case study of a nearshore construction project in Thailand. The study identified numerous high and very high-risk factors in the assessment and analysis of occupational safety in dredging and reclamation work. Consequently, a targeted response was implemented to control and mitigate these risks to an acceptable level. The outcome of this study will provide a significant contribution to the advancement of guidelines and best practices for improving the safety of dredging and reclamation operations.
This study provides a comparative analysis of Environmental, Social, and Governance (ESG) ratings methodologies and explores the potential of eXtensible Business Reporting Language (XBRL) to enhance transparency and comparability in ESG reporting. Evaluating ratings from different agencies, the research identifies significant methodological inconsistencies that lead to conflicting information for investors and stakeholders. Statistical tests and adjusted rating scales confirm substantial divergence in ESG scores, primarily due to differing data categories and indicators used by rating firms. Using a sample of 265 European companies, the study demonstrates that individual ESG agencies report markedly different ratings for the same firms, which can mislead stakeholders. It proposes that XBRL based reporting can mitigate these inconsistencies by providing a standardized framework for data collection and reporting. XBRL enables accurate and efficient data collection, reducing human error and enhancing the transparency of ESG reports. The findings advocate for integrating XBRL in ESG reporting to achieve higher levels of comparability and reliability. The study calls for greater regulatory oversight and the adoption of standardized taxonomies in ESG reporting to ensure consistent and comparable data across sectors and jurisdictions. Despite challenges like the lack of a standardized taxonomy and inconsistent adoption, the research contends that XBRL can significantly improve the reliability of ESG ratings. In conclusion, this study suggests that standardizing ESG data through XBRL could provide a viable solution to the unreliability of current ESG rating scales, supporting sustainable business practices and informed decision making by investors.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
Industrial heritage is a legacy from the past that we live with today and pass on to future generations. The economic value of this heritage can be defined as the amount of welfare that it generates for society, and this value should not be ignored. However, current research based on economic analysis has mostly focused on qualitative statements instead of quantitative assessment. This study proposes an innovative methodology combining qualitative (field research) and quantitative (willingness to pay and contingent valuation) methods to assess the economic value of industrial heritage. The industrial heritage of Tangshan, China, was chosen as a case study, and the research found that museums and cultural creative parks are effective ways to conserve industrial heritage. The entrance fee can be used to represent the economic value of the heritage site. There was a positive correlation between the influence of economic value and the entrance fees residents would prefer to pay. The results indicate the locals would prefer lower entrance fees for the transformed heritage museums (The average current cost: $2.23). Locals were most concerned about the entrance fees for the Kailuan Coal Mine and Qixin Cement Plant Museums, which have both been renewed as urban landmarks for city tourism. Renewal methods have been applied to six industrial heritage sites in Tangshan; these sites have their own conservation and renewal practices based on city-level development or industrial attributes. Thus, when residents recognize the economic value of a heritage site, they are willing to pay a higher entrance fee. This research demonstrates the economic value of industrial heritage using a mixed methods approach and provides a basis for assessing the value of cultural heritage for urban tourism analysis.
This study introduces an innovative approach to assessing seismic risks and urban vulnerabilities in Nador, a coastal city in northeastern Morocco at the convergence of the African and Eurasian tectonic plates. By integrating advanced spatial datasets, including Landsat 8–9 OLI imagery, Digital Elevation Models (DEM), and seismic intensity metrics, the research develops a robust urban vulnerability index model. This model incorporates urban land cover dynamics, topography, and seismic activity to identify high-risk zones. The application of Landsat 8–9 OLI data enables precise monitoring of urban expansion and environmental changes, while DEM analysis reveals critical topographical factors, such as slope instability, contributing to landslide susceptibility. Seismic intensity metrics further enhance the model by quantifying earthquake risk based on historical event frequency and magnitude. The calculation based on higher density in urban areas, allowing for a more accurate representation of seismic vulnerability in densely populated areas. The modeling of seismic intensity reveals that the most susceptible impact area is located in the southern part of Nador, where approximately 50% of the urban surface covering 1780.5 hectares is at significant risk of earthquake disaster due to vulnerable geological formations, such as unconsolidated sediments. While the findings provide valuable insights into urban vulnerabilities, some uncertainties remain, particularly due to the reliance on historical seismic data and the resolution of spatial datasets, which may limit the precision of risk estimations in less densely populated areas. Additionally, future urban expansion and environmental changes could alter vulnerability patterns, underscoring the need for continuous monitoring and model refinement. Nonetheless, this research offers actionable recommendations for local policymakers to enhance urban planning, enforce earthquake-resistant building codes, and establish early warning systems. The methodology also contributes to the global discourse on urban resilience in seismically active regions, offering a transferable framework for assessing vulnerability in other coastal cities with similar tectonic risks.
Copyright © by EnPress Publisher. All rights reserved.