Three-dimensional (3D) bioprinting is a promising technological approach for various applications in the biomedical field. Natural polymers, which comprise the majority of 3D printable “bioinks”, have played a crucial role in various 3D bioprinting technologies during the layered 3D manufacturing processes in the last decade. However, the polymers must be customized for printing and effector function needs in cancer, dental care, oral medicine and biosensors, cardiovascular disease, and muscle restoration. This review provides an overview of 3D bio-printed natural polymers—commonly employed in various medical fields—and their recent development.
Recent research efforts have increasingly concentrated on creating innovative biomaterials to improve bone tissue engineering techniques. Among these, hybrid nanomaterials stand out as a promising category of biomaterials. In this study, we present a straightforward, cost-efficient, and optimized hydrothermal synthesis method to produce high-purity Ta-doped potassium titanate nanofibers. Morphological characterizations revealed that Ta-doping maintained the native crystal structure of potassium titanate, highlighting its exciting potential in bone tissue engineering.
Currently, there is a significant gap between the training objectives and the actual situation of electromechanical talents in higher vocational colleges. Many teachers in electromechanical departments do not meet the required qualifications and are unable to adapt to the developments of the new era. The talent training mode is insufficiently comprehensive, and the criteria for talent assessment are not unified. In response to these issues, it is necessary to promptly change the mindset, innovate educational ideas, focus on the present while planning for the future, clarify training objectives, adopt a dual education model that integrates production and education, strengthen the faculty, utilize their potential, and improve the overall educational quality to provide guarantees for talent development.
The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to the sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. The sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.
In the current context of new engineering, the teaching of the course "Civil Engineering Construction Organization and Management" should be targeted and focused. In terms of setting up the course content, schools need to engage in extensive communication and cooperation with enterprises and industry associations, and integrate more practical education elements into the teaching methods to ensure that students can achieve a unity of knowledge and action; In relevant course teaching, teachers should also introduce more ideological and political elements to improve students' ideological and moral literacy. This article analyzes and explores the teaching reform of the course "Civil Engineering Construction Organization and Management" in the context of the new engineering discipline.
Copyright © by EnPress Publisher. All rights reserved.