In order to continuously improve the level of kindergarten education and teaching, we use classroom observation to carry out diversified research and practice: in the classroom observation process, strict requirements: pre-class meeting, in-class observation, after-class reflection. Select the record sheet appropriate for the topic. After this set of procedures is fixed, the operation scale is involved. Classroom observation captures the interest of teachers, arouses their enthusiasm, and deeps the understanding of classroom observation. Based on the achievement degree of research objectives, the completion degree of research contents, and the application of various research methods, classroom observation is really implemented.
The current with the rapid development of Internet and new media technology, the information openness and diversity makes ideological education is facing big challenge, in accordance with the "five a three-ring four law" teaching mode,the fundamental task of implementing ideological and political education, fostering values and cultivating talents is comprehensively carried out. We are advancing the resonance of the “three classrooms” and promoting the synchronous implementation of the “four transformations”, aiming to enhance the “five capacities” of students, according to the current construction of" big education courses "concept, change education thought and idea.
As cities continue to face the increasing demands of urban transportation and the need for sustainable mobility solutions, the integration of intelligent transportation systems (ITS) with smart city infrastructure emerges as a promising approach. This paper presents a novel framework for integrating ITS with smart city infrastructure, aiming to address the challenges of urban transportation and promote sustainable mobility. The framework is developed through a comprehensive literature review, case studies, and stakeholder interviews, providing significant insights into the integration process. Our research outlines the key components of smart city infrastructure that can be integrated with ITS, highlights the benefits of integration, and identifies the challenges and barriers that need to be addressed. Additionally, we propose and apply evaluation methods to assess the effectiveness of ITS integration with smart city infrastructure. The results demonstrate the novelty and significance of this framework, as it significantly reduces traffic congestion, improves air quality, and enhances citizen satisfaction. This paper contributes to the existing literature by providing a comprehensive approach to integrating ITS with smart city infrastructure, offering a transformative solution for urban transportation challenges.
This research introduces a novel framework integrating stochastic finite element analysis (FEA) with advanced circular statistical methods to optimize heat pump efficiency under material uncertainties. The proposed methodologies and optimization focus on balancing the mean efficiency and variability by adjusting the concentration parameter of the Von Mises distribution, which models directional variability in thermal conductivity. The study highlights the superiority of the Von Mises distribution in achieving more consistent and efficient thermal performance compared to the uniform distribution. We also conducted a sensitivity analysis of the parameters for further insights. The results show that optimal tuning of the concentration parameter can significantly reduce efficiency variability while maintaining a mean efficiency above the desired threshold. This demonstrates the importance of considering both stochastic effects and directional consistency in thermal systems, providing robust and reliable design strategies.
Copyright © by EnPress Publisher. All rights reserved.