In this study, we utilized a convolutional neural network (CNN) trained on microscopic images encompassing the SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum” (causing of malaria in humans), the bacterium “vibrio cholerae” (which produces the cholera disease) and non-infected samples (healthy persons) to effectively classify and predict epidemics. The findings showed promising results in both classification and prediction tasks. We quantitatively compared the obtained results by using CNN with those attained employing the support vector machine. Notably, the accuracy in prediction reached 97.5% when using convolutional neural network algorithms.
The growth of mobile Internet has facilitated access to information by minimizing geographical barriers. For this reason, this paper forecasts the number of users, incomes, and traffic for operators with the most significant penetration in the mobile internet market in Colombia to analyze their market growth. For the forecast, the convolutional neural network (CNN) technique is used, combined with the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit (GRU) techniques. The CNN training data corresponds to the last twelve years. The results currently show a high concentration in the market since a company has a large part of the market; however, the forecasts show a decrease in its users and revenues and the growth of part of the competition. It is also concluded that the technique with the most precision in the forecasts is CNN-GRU.
This study adapts traditional service blueprint methodologies for technology-driven coopetition networks, where companies simultaneously collaborate and compete. Integrating insights from service science, we developed an enhanced service blueprint framework with three key components: the cyber frontstage Lane for digital interactions, the physical backstage Lane for physical operations, and the support stage lane for supporting processes. Empirical validation in the Portuguese stone sector demonstrated the framework’s effectiveness in identifying network dysfunctions and its ease of use for industry professionals. Feedback highlights its relevance in capturing the complexities of modern digital coopetition and managing interactions and resources. This research underscores the necessity of updating service blueprint methods to optimize service delivery and value co-creation in digitally evolving sectors.
Outsourcing logistics operations is a common trend as businesses prioritize core activities. Establishing a sustainable partnership between businesses and logistics service providers requires a systematic approach. This study is needed to develop a more effective and adaptive framework for logistics service provider selection by integrating diverse criteria and decision-making methodologies, ultimately enhancing the precision and sustainability of procurement processes. This study advocate for leveraging industry-based knowledge in procurement, emphasizing the need to define decision-making elements. The research analyzes nearly 300 logistics procurement projects, using a neural network-based methodology to propose a model that aids businesses in identifying optimal criteria for evaluating logistics service providers based on extensive industry knowledge. The goal of this study is to develop and test a practical model that would support businesses in choosing most suitable criteria for selection of logistics service providers based on cumulative market patterns. The results of this study are as follows. It introduces novel elements by gathering and systematizing unique market data using developed data processing methodology. It innovatively classifies decision-making elements, allocating them into distinct groups for use as features in a neural network. The study further contributes by developing and training a predictive model based on a prepared dataset, addressing pre-defined goals, expectations related to green logistics, and specific requirements in the tendering process for selecting logistics service providers. Study is concluded by summarizing suggestions for future research in area of adopting neural networks for selection of logistics service providers.
This paper utilizes an advanced Network Data Envelopment Analysis (DEA) model to examine the impact of mobile payment on the efficiency of Taiwan banking industry. Inheriting the literature, we separate the banking operation process into two stages, namely profitability and marketability. Mobile payment is then considered as the core factor in the second stage. Our paper discovers network DEA model can effectively enhance the analysis of banking industry’s efficiency, and mobile payment has a notable impact on Taiwan banking industry. Regarding the profitability stage, there is only one efficient bank in 2019 and 2022, respectively. These banks also perform better in terms of “mobile payment production”. In the marketability stage, there is also only one bank in 2021 and one bank in 2022, that can reach to unique efficiency score. This indicates many banks attempt to increase earnings per share through investing in mobile payment services. However, the achievement still needs more wait. This leads to the fact that no bank can reach the ultimate overall efficiency. Within our sample, we also find that regarding promoting mobile payment services, Private Banks outperform Government Banks.
The development of artificial intelligence (AI) and 5G network technology has changed the production and lifestyle of people. AI also has promoted the transformation of talent training mode under the integration of college industry and education. In the context of the current transformation of education, AI and 5G networks are increasingly used in the education industry. This paper optimizes and upgrades the training mode of skilled talents in higher vocational colleges by using its advanced methods and technologies of information display. This means is helpful to analyze and solve a series of objective problems such as the single training form of the current talent training mode. This paper utilizes the principles and laws of industry university research (IUR) collaboration for reference to construct and optimize the talent training mode based on the analysis of the requirements of talent training and the role of each subject in talent training. Then, the ecological talent training environment can be realized. In the analysis of talent training mode under the cooperation of production and education, the correlation coefficients of network construction, environment construction, scientific research funds, scientific research level, and policy support were 0.618, 0.576, 0.493, 0.785, and 0.451, respectively. This showed that the scientific research level had the greatest impact on talent training in the talent training mode of IUR collaboration, while policy support had less impact on talent training compared with other factors. The combination of AI and 5G network technology with the talent training mode of IUR cooperation can effectively analyze the influencing factors and problems of the talent training mode. The hybrid method is of great significance to the talent training strategy and fitting degree.
Copyright © by EnPress Publisher. All rights reserved.