The provided material presents a priority article on the scientific discovery titled “The phenomenon of simultaneous destruction of water-oil and oil-water emulsions”. The authors propose the corresponding formula: the previously unknown phenomenon of simultaneous destruction of water-oil and oil-water emulsions occurs when polynanostructured surfactant demulsifiers with characteristics akin to crystalline liquids, intramolecular interblock activity, and enduring intramolecular nanomotors (such as block copolymers of ethylene and propylene oxides, which act as sources of oligomer homologues of oxyethylene ethers) are added to crude oil during primary oil processing. This phenomenon is attributed to the redistribution of oligomer homologues, with the most hydrophobic oxyethylene ethers being dispersed in water-oil emulsions and the most hydrophilic ones in oil-water emulsions, resulting in robust nanodispersed phases with crystalline liquid properties.
This study investigates the impact of extreme rainfall events on soil erosion in the downstream Parnaíba River Basin, located in the Brazilian Cerrado. The analysis focused on rainfall erosivity (R factor) and soil erodibility (K factor) as key indicators. The average erosivity in the region was 9051 MJ mm h−1ha−1year−1, with a variation between 7943 and 10,081 MJ mm h−1ha−1year−1, suggesting a high erosive potential, mainly in the rainiest months, from December to April. The soils of the studied area, mainly Ultisols and Chernosols, present high to very high erodibility, with K factor values ranging from 0.025 to 0.050 t h MJ−1 mm−1. Furthermore, fieldwork revealed areas, near highways, with apparently fragile soils, as well as rills and gullies, identified through photographs taken during fieldwork. These locations, due to the combination of high erosivity and susceptible soils, were considered prone to the occurrence of erosion processes, representing an additional risk to local infrastructure. The spatialization of R and K factors, along with field observations, showed that much of the area is at high risk of erosion and landslides, particularly in regions with greater topographic variability and proximity to water bodies. These results provide a basis for the development of mitigation strategies, being important for the effective prevention of landslides.
The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
This research explores the interactions within supply chains in the manufacturing sector, with a special emphasis on the distinctive obstacles encountered by the mosquito coil industry. The study is motivated by the need to comprehensively understand and address the multifaceted challenges encountered by manufacturers in their supply chain processes. The mosquito coil industry holds significant importance in Malaysia, primarily due to the country’s tropical climate, which is conducive to mosquito proliferation and the transmission of mosquito-borne diseases. Nowadays, there are growing complexities and disruptions experienced by the mosquito coil sector’s supply chain, prompting an in-depth investigation. The main objective is to identify the challenges and resilience strategies employed by manufacturers in this sector, providing an understanding that contributes to the broader discourse on supply chain dynamics. Employing a qualitative case study methodology, this research engages in extensive data collection through interviews, document analysis, and direct observations within the selected mosquito coil manufacturing entity. This methodology allows for an immersive exploration of the challenges faced, revealing insights into the factors influencing the supply chain dynamics. The study reveals a wide array of challenges, from obtaining raw materials to managing distribution logistics, underscoring the unique complexities specific to the sector. As a result, the research identifies and analyzes resilience strategies implemented by the mosquito coil manufacturer to mitigate challenges, such as procurement challenges faced in financial related issues, logistical complexities occurred from recent years’ worldwide pandemic, production disruptions from company’s human resource-related issues, global factors from the company’s competitors and market challenges, and technology integration from rapid technological advancements. Thus, implications of this study extend beyond the mosquito coil sector, contributing valuable knowledge to the academic community, practitioners, and policymakers involved in supply chain management. The research not only addresses the identified challenges but also serves as a foundation for enhancing the overall understanding of manufacturing supply chain dynamics, thereby fostering informed decision-making for improved industry resilience.
The coastal area of Bohai Bay of China has a wide distribution of salt-accumulated soils which could pose a problem to the sustainable development of the local ecology. As a result, the land remains largely degraded and unsuitable for biophysical and agricultural purposes. In this study, we characterized the soil and native plants in the area, to properly understand and identify species with satisfactory adaptation to saline soil and of high economic or ecological value that could be further developed or domesticated, using appropriate cultivation techniques. The goal was to determine the salinity parameters of the soil, identify the inhabiting plant species and contribute to the ecosystem data base for the Bay area. A field survey involving soil and plant sampling and analyses was conducted in Yanshan and Haixing Counties of Hebei Province, China, to estimate the level of salt ions as well as plant species population and type. The mean electrical conductivity (EC) of the soils ranged from 0.47 in more remote locations to 23.8 ds/m in locations closer to the coastline and the total salt ions from 0.05 to 8.8 g/kg, respectively. Each of the salinity parameters, except HCO3− showed wide variations as judged from the coefficient of variation (CV) values. The EC, as well as chloride, sulphate, Mg and Na ions increased significantly towards the coastline but the HCO3− ion showed a relatively even distribution across sampling points. Sodium was the most abundant cation and chloride and sulphate the most abundant anions. Therefore, the most dominant salinity-inducing salt that should be properly managed for sustainable ecosystem health was sodium chloride. Based on the EC readings, the most remote location from the coastline was non-saline but otherwise, the salinity ranged from slightly to strongly-very strongly saline towards the coast. There were considerably wide variations in the number and distribution of plant species across sampling locations, but most were dominated entirely Phragmites australis, Setaria viridis and Sueda salsa. Other species identified were Aeluropus littoralis, Chloris virgata, Heteropappus altaicus, Imperata cylindrica, Puccinellia distans, Puccinellia tenuiflora and Scorzonera austriaca. On average, the sampling points furthest from the coast produced the most biomass, and the point with the highest elevation had the most diverse species composition. Among species, Digitaria sanguinalis produced the highest dry mass, followed by Lolium perenne and H. altaicus, but there were considerable variations in biomass yield across sampling locations, with the location nearest the coastline having no vegetation. The observed variations in soil and vegetation should be strongly considered by planners to allow for the sustainable development of the Bahai bay area.
This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
Copyright © by EnPress Publisher. All rights reserved.