The Cisadane Watershed is in a critical state, which has expanded residential areas upstream of Cisadane. Changes in land use and cover can impact a region’s hydrological characteristics. The Soil and Water Assessment Tool (SWAT) is a hydrological model that can simulate the hydrological characteristics of the watershed affected by land use. This study aims to evaluate the impact of land use change on the hydrological characteristics of the Cisadane watershed using SWAT under different land use scenarios. The models were calibrated and validated, and the results showed satisfactory agreement between observed and simulated streamflow. The main river channel is based on the results of the watershed delineation process, with the watershed boundary consisting of 85 sub-watersheds. The hydrological characteristics showed that the maximum flow rate (Q max) was 12.30 m3/s, and the minimum flow rate (Q min) was 5.50 m3/s. The study area’s distribution of future land use scenarios includes business as usual (BAU), protecting paddy fields (PPF), and protecting forest areas (PFA). The BAU scenario had the worst effect on hydrological responses due to the decreasing forests and paddy fields. The PFA scenario yielded the most favourable hydrological response, achieving a notable reduction from the baseline BAU in surface flow, lateral flow, and groundwater by 2%, 7%, and 2%, respectively. This was attributed to enhanced water infiltration, alongside increases in water yield and evapotranspiration of 3% and 15%, respectively. l Therefore, it is vital to maintain green vegetation and conserve land to support sustainable water availability.
The role of trace gases in the storage of heat in the atmosphere of the Earth and in the exchange of energy between the atmosphere and outer space is discussed. The molar heat capacities of the trace gases water vapor, carbon dioxide and methane are only slightly higher than those of nitrogen and oxygen. The contribution of trace gases carbon dioxide and methane to heat storage is negligible. Water vapor, with its higher concentration and conversion energies, contributes significantly to the heat storage in the atmosphere. Most of the heat in the Earth’s atmosphere is stored in nitrogen and oxygen, the main components of the atmosphere. The trace gases act as converters of infrared radiation into heat and vice versa. They are receivers and transmitters in the exchange of energy with outer space. The radiation towards space is favored compared to the reflection towards the surface of the Earth with increasing altitude by decreasing the density of the atmosphere and condensation of water vapor. Predictions of the development of the climate over a century by extrapolation are critically assessed.
This study investigates the relationship between hydrological processes, watershed management, and road infrastructure resilience, focusing on the impact of flooding on roads intersecting with streams in River Nile State, Sudan. Situated between 16.5° N to 18.5° N latitude and 33° E to 34° E longitude, this region faces significant flooding challenges that threaten its ecological and economic stability. Using precise Digital Elevation Models (DEMs) and advanced hydrological modeling, the research aims to identify optimal flood mitigation solutions, such as overpass bridges. The study quantifies the total road length in the area at 3572.279 km, with stream orders distributed as follows: First Order at 2276.79 km (50.7%), Second Order at 521.48 km (11.6%), Third Order at 331.26 km (7.4%), and Fourth Order at 1359.92 km (30.3%). Approximately 27% (12 out of 45) of the identified road flooding points were situated within third- and fourth-order streams, mainly along the Atbara-Shendi Road and near Al-Abidiya and Merowe. Blockages varied in distance, with the longest at 256 m in Al-Abidiya, and included additional measurements of 88, 49, 112, 106, 66, 500, and 142 m. Some locations experienced partial flood damage despite having water culverts at 7 of these points, indicating possible design flaws or insufficient hydrological analysis during construction. The findings suggest that enhanced scrutiny, potentially using high-resolution DEMs, is essential for better vulnerability assessment and management. The study proposes tailored solutions to protect infrastructure, promoting sustainability and environmental stewardship.
This paper presents a coupling of the Monte Carlo method with computational fluid dynamics (CFD) to analyze the flow channel design of an irradiated target through numerical simulations. A novel series flow channel configuration is proposed, which effectively facilitates the removal of heat generated by high-power irradiation from the target without necessitating an increase in the cooling water flow rate. The research assesses the performance of both parallel and serial cooling channels within the target, revealing that, when subjected to equivalent cooling water flow rates, the maximum temperature observed in the target employing the serial channel configuration is lower. This reduction in temperature is ascribed to the accelerated flow of cooling water within the serial channel, which subsequently elevates both the Reynolds number and the Nusselt number, leading to enhanced heat transfer efficiency. Furthermore, the maximum temperature is observed to occur further downstream, thereby circumventing areas of peak heat generation. This phenomenon arises because the cooling water traverses the target plates with the highest internal heat generation at a lower temperature when the flow channels are arranged in series, optimizing the cooling effect on these targets. However, it is crucial to note that the pressure loss associated with the serial structure is two orders of magnitude greater than that of the parallel structure, necessitating increased pump power and imposing stricter requirements on the target container and cooling water pipeline. These findings can serve as a reference for the design of the cooling channels in the target station system, particularly in light of the anticipated increase in beam power during the second phase of the China Spallation Neutron Source (CSNS Ⅱ).
We report a method for effectively and homogeneously incorporating carbon nanotubes (CNTs) in the form of double-wall (DWCNTs) and multi-wall (MWCNTs) structures into commercial paints without the use of additives, surfactants, or chemical processes. The process involves the physical mixing of the nanotubes and polymers using the cavitation energy of an ultrasonic bath. It is a simple, fast method that allows for uniform distribution of carbon nanotube bundles within the polymer for direct application. Due to the hydrophobic properties of the carbon nanotubes as grown, we used paint samples containing 0.3% by mass of both types of CNTs and observed an improvement in waterproofing through wettability and water absorption through immersion tests on the samples. Different solvents such as water, formaldehyde, and glycerin were used, and the results showed an increase in paint impermeability of 30% and 25% with the introduction of DWCNTs and MWCNTs, respectively. This indicates a promising, economically viable, and revolutionary method for applying nanotechnology in the polymer industry.
This study focuses on the use of the Soil and Water Assessment Tool (SWAT) model for water budgeting and resource planning in Oued Cherraa basin. The combination of hydrological models such as SWAT with reliable meteorological data makes it possible to simulate water availability and manage water resources. In this study, the SWAT model was employed to estimate hydrological parameters in the Oued Cherra basin, utilizing meteorological data (2012–2020) sourced from the Moulouya Hydraulic Basin Agency (ABHM). The hydrology of the basin is therefore represented by point data from the Tazarhine hydrological station for the 2009–2020 period. In order to optimize the accuracy of a specific model, namely SWAT-CUP, a calibration and validation process was carried out on the aforementioned model using observed flow data. The SUFI-2 algorithm was utilized in this process, with the aim of enhancing its precision. The performance of the model was then evaluated using statistical parameters, with particular attention being given to Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The NSE values for the study were 0.58 for calibration and 0.60 for validation, while the corresponding R2 values were 0.66 and 0.63. The study examined 16 hydrological parameters for Oued Cherra, determining that evapotranspiration accounted for 89% of the annual rainfall, while surface runoff constituted only 6%. It also showed that groundwater recharge was pretty much negligible. This emphasized how important it is to manage water resources effectively. The calibrated SWAT model replicated flow patterns pretty well, which gave us some valuable insights into the water balance and availability. The study’s primary conclusions were that surface water is limited and that shallow aquifers are a really important source of water storage, especially for irrigation during droughts.
Copyright © by EnPress Publisher. All rights reserved.