Major spices crops such as black pepper (Piper nigrum L.), cardamom (Elettaria cardamomum Maton.) and turmeric (Curcuma longa L.) production in India, is sustained losses due to several reasons. Among them, one of the major constraints are nematode infesting diseases, which causes significant yield losses and affecting their productivity. The major nematode pests infesting these crops include burrowing nematode Radopholus similis; root knot nematode, Meloidogyne incognita and M. javanica on black pepper. Whereas, lesion nematode, Pratylenchus sp., M. incognita and R. similis infesting cardamom and turmeric crops. Black pepper is susceptible to a number of diseases of which slow decline caused by R. similis and M. incognita or Phytophthora capsici either alone and in combination and root knot disease caused by Meloidogyne spp. are the major ones. Root knot disease caused by Meloidogyne spp. is major constraints in the successful cultivation and production in cardamom. Turmeric is susceptible to a number of diseases such as brown rot disease is caused by Fusarium sp. and lesion nematode, Pratylenchus sp. and root knot disease caused by M. incognita. Adoption of integrated pest management schedules is important in these crops since excessive use of pesticides could lead to pesticide residues in the produce affecting human health and also causing other ecological hazards.
This paper uses Public Choice analysis to examine the case for and experience with Public-Private Partnerships (PPPs). A PPP is a contractual platform which connects a governmental body and a private entity. The goal is to provide a public sector program, service, or asset that would normally be provided exclusively by a public sector entity. This paper focuses on PPPs in developed countries, but it also draws on studies of PPPs in developing countries. The economics literature generally defines PPPs as long-term contractual arrangements between a public authority (local or central government) and a private supplier for the delivery of services. The private sector supplier takes responsibility for building infrastructure components, securing financing of the investment, and then managing and maintaining this facility.
However, in addition to those formed through contracts, PPPs may take other forms such as those developed in response to tax subvention or coercion, as in the case of regulatory mandates. A key element of PPP is that the private partner takes on a significant portion of the risk through a schedule of specified remuneration, contingency payments, and provision for dispute resolution. PPPs typically are long-term arrangements and involve large corporations on the private side, but may also be limited to specific phases of a project.
The types of PPPs discussed in this paper exclude arrangements which may result from government mandates such as the statutory emission mandates imposed on automobile manufacturers and industrial facilities (e.g., power plants). It also excludes PPP-like organizations resulting from US section 501(c)(3) of the Internal Revenue Code, which provides tax subsidies for certain public charities, scientific research organizations, and organizations whose goals are to prevent cruelty to animals or erect public monuments at no expense to the government. This paper concludes that an array of Public Choice tools are applicable to understanding the emergence, success, or failure of PPPs. Several short case studies are provided to illustrate the practicalities of PPPs.
The use of saline water in agriculture is a viable alternative, considering the increased demand for fresh water. The objective of this study was to evaluate the growth and phytomass production of sugar beet under irrigation with water of different saline concentrations in a field experiment on the campus of the Federal University of Alagoas in Arapiraca. The treatments were five levels of electrical conductivity (1.0, 2.0, 3.0, 4.0 and 5.0 dS m-1). The design was in randomized blocks, with four repetitions. The maximum yield of sugar beet at 27 days after the application of saline treatments was obtained with a salinity of 3.0 dS m-1, for the variables plant height (PA), stem diameter (CD), root length (RC), aboveground dry phytomass (FSPA) and total dry phytomass (FST). At 42 days after the application of saline treatments, the variables aboveground fresh phytomass (FFPA), root fresh phytomass (FFR), total fresh phytomass (FFT), aboveground dry phytomass (FSPA) and total dry phytomass (FST) increased with increasing water salinity. Rain may have influenced the results obtained for the evaluations, performed at 42 days after the application of the saline treatments.
Energy shortages and environmental damage have become serious problems facing the society today. Biomass can be a renewable energy source, which large-scale development and utilization are of great significance to industry and social life. Biomass pyrolysis technology can achieve effective utilization of biomass energy. It is necessary to optimize the pyrolysis reaction technology and device for realize the industrialization and large-scale production of biomass energy.
BiVO4 was hydrothermally synthesized under different preparing conditions and characterized by XRD, SEM, Raman spectrum and BET specific surface area. The influence of different pH value and annealing temperature and hydrothermal time on the morphologies and structures of the BiVO4 samples was investigated systematically. It can be found that annealing would eliminate the effects caused by the pH of precursor, heating temperature and heating time, but preparing conditions still influenced the size and specific surface area of samples. Furthermore, the photocatalytic activities of the fabricated BiVO4 were also evaluated by the degradation of methyl blue in aqueous solution under UV and visible light irradiation.
Copyright © by EnPress Publisher. All rights reserved.