The xanthorrhiza species of the genus Arracacia belongs to the Apiaceae family and is known for its ability to generate tuberous reservoir roots that are harvested annually and marketed fresh in South American countries such as Colombia, Brazil, Venezuela, Peru, Bolivia and Ecuador. In Colombia, arracacha is planted mainly in 15 departments and the regional cultivars are differentiated by the color of the leaves, petiole and tuberous root, the best known being amarilla común or paliverde, yema de huevo, and cartagenera. There are studies that have characterized regional materials by applying a limited number of descriptors, but they do not allow knowing the morphology and phenotypic differentiation of each one; therefore, their definition and characterization constitute a support in breeding programs that allow the efficient use of the genetic potential and increase the knowledge about the diversity of cultivars. Phenotypic characterization and description of three cultivars was performed during two production cycles (2016 and 2018) in two phases (vegetative and productive) applying 74 morphological variables (42 qualitative and 32 quantitative) organized in seven groups of variables: plant, leaf, leaflet, petiole, propagule, stock and tuberous root. A factorial analysis for mixed data (FAMD) was performed, which incorporated a multivariate analysis with all variables and identified 11 discriminant variables, 8 qualitative and 3 quantitative, which can be used in processes of characterization of arracacha materials. A morphological description of each cultivar was made, which means that this is the first complete characterization study of regional arracacha materials in Colombia.
Introduction: The selection of genotypes with determinate growth habit in tomato should contemplate adequate selection criteria to increase the efficiency of the breeding program. Objective: The objective of this work was to estimate selection criteria for “chonto” type tomato lines with determined growth habit. Materials and methods: This work was carried out at the Universidad Nacional de Colombia (Palmira Campus), in 2016, with seven lines with determinate growth habit and a control with indeterminate growth. Heritability in a broad sense (h2 g), coefficient of environmental variation, coefficient of genetic variation, selection efficiency and genetic gain were determined in parameters of morphological, phonological, fruit quality, fruit shape and production, using the RELM/BLUP procedure of the SELEGEN software. Results: There were three ranges of h2 g, the first with values of h2 g greater than 0.76, the second between 0.53 and 0.38, and the third with a value less than 0.38. The highest values of h2 g were for final plant height with 0.92, plant height at harvest with 0.88, yield per plant with 0.83, days to flowering with 0.83, number of fruits per plant with 0.82, and days to harvest with 0.82. For genetic gain it was found that the control had the highest values for final plant height, plant height at harvest, internode length, days to harvest, harvest duration, soluble solids content, number of fruits per plant, fruit weight and yield per plant; however, in some parameters such as height and phenology for selection by determined growth habit, the lowest values were better. Conclusion: There was evidence of genetic parameters that could be considered as selection criteria for “chonto” type tomato lines with determinate growth habit.
This article presents a methodology to perform quality analysis on the cadastral map, based on the tools provided by open (public or free) license geographic information systems (GIS). The errors presented in the cadastral map have a direct impact on the information systems, which can lead to erroneous decisions and to an increase in the costs of maintenance and updating of spatial data. The methodology developed was used and tested by Costa Rica’s Cadastre and Registry Regularization Program; as a product of this program, a continuous cadastral map has been created for Costa Rica, on which cadastral and registry transactions will be processed within the National Registry of Costa Rica. The methodology allows detecting, locating and classifying errors in the cadastral map for easily correcting, so that this map correctly represents the reality of the properties that conform it.
Lettuce (Lactuca sativa L.) is the main leafy vegetable grown in Brazil. Its productivity and quality are limited by the growing season, the nearby environment and the type of cultivar adopted. The objective of this work was to verify at different times of the year the best planting environment for lettuce cultivation in a semi-humid tropical climate. For this purpose, an experiment was set up in three different seasons (October–November 2014, January–March, May–July 2015). The experimental design was randomized blocks, in a 3 × 3 × 2 factorial arrangement, consisting of three seasons, three cultivars (cvs. Vera®, Tainá® and Rafaela®) and two growing environments (low tunnel with beds protected with mulching consisting of soil protection with plastic fabric covering, and beds without protection or conventional cultivation) and four replicates per treatment. Plant biomass, stem length, head diameter, number of leaves per head and crop productivity were evaluated as response parameters. The results showed that the May–July period favored biomass production, head diameter and productivity. Despite the similarity between varieties, the variety Vera® is more productive in biomass, number of leaves per head, stem length and productivity. The low tunnel planting system with mulching is adequate under the conditions evaluated for lettuce cultivation. This system in the May–July period favors a superior development in the characteristics biomass, head diameter and productivity, if compared to conventional cultivation during the October–November period.
Urban trees are one of the valuable storage in metropolitan areas. Nowadays, a particular attention is paid to the trees and spends million dollars per year to their maintenance. Trees are often subjected to abiotic factors, such as fungi, bacteria, and insects, which lead to decline mechanical strength and wood properties. The objective of this study was to determine the potential degradation of Elm tree wood by Phellinus pomaceus fungi, and Biscogniauxia mediteranae endophyte. Biological decay tests were done according to EN 113 standard and impact bending test in accordance with ASTM-D256-04 standard. The results indicated that with longer incubation time, weight loss increased for both sapwood and heartwood. Fungal deterioration leads to changes in the impact bending. In order to manage street trees, knowing tree characteristics is very important and should be regularly monitored and evaluated in order to identify defects in the trees.
Copyright © by EnPress Publisher. All rights reserved.