Metal iodide materials as novel components of thermal biological and medical systems at the interface between heat transfer techniques and therapeutic systems. Due to their outstanding heat transfer coefficients, biocompatibility, and thermally activated sensitivity, metal iodides like silver iodide (AgI), copper iodide (CuI), and cesium iodide (CsI) are considered to be useful in improving the performance of medical instruments, thermal treatment processes, and diagnostics. They are examined for their prospective applications in controlling thermal activity, local heating therapy, and smart temperature-sensitive drug carrier systems. In particular, their application in hyperthermia therapy for cancer treatment, infrared thermal imaging for diagnosis, and nano-based drug carriers points to a place for them in precision medicine. But issues of stability of materials used, biocompatibility, and control of heat—an essential factor that would give the tools the maximum clinical value—remain a challenge. The present mini-review outlines the emerging area of metal iodides and their applications in medical technologies, with a special focus on the pivotal role of these materials in enhancing non-invasive, efficient, and personalized medicine. Over time, metal iodide-based systems scouted a new era of thermal therapies and diagnostic instrumentation along with biomedical science as a whole.
Heat transfer fluids (HTFs) are critical in numerous industrial processes (e.g., the chemical industry, oil and gas, and renewable energy), enabling efficient heat exchange and precise temperature control. HTF degradation, primarily due to thermal cracking and oxidation, negatively impacts system performance, reduces fluid lifespan, and increases operational costs associated with correcting resulting issues. Regular monitoring and testing of fluid properties can help mitigate these effects and provide insights into the health of both the fluid and the system. To date, there is no extensive literature published on this topic, and the current narrative review was designed to address this gap. This review outlines the typical operating temperature ranges for industrial heat transfer fluids (i.e., steam, organic, synthetic, and molten salts) and then focuses specifically on organic and synthetic fluids used in industrial applications. It also outlines the mechanisms of fluid degradation and the impact of fluid type and condition. Other topics covered include the importance of fluid sampling and analysis, the parameters used to assess the extent of thermal degradation, and the management strategies that can be considered to help sustain fluid and system health. Operating temperature, system design, and fluid health play a significant role in the extent of thermal degradation, and regular monitoring of fluid properties, such as viscosity, acidity, and flash point, is crucial in detecting changes in condition (both early and ongoing) and providing a basis for decisions and interventions needed to mitigate or even reverse these effects. This includes, for example, selecting the right HTF for the specific application and operating temperature. This article concludes that by understanding the mechanisms of thermal degradation and implementing appropriate management strategies, it is possible to sustain the lifespan of thermal fluids and systems, ensure safe operation, and help minimise operational expenditure.
Copyright © by EnPress Publisher. All rights reserved.