The soundscape studied has gained increasingly frequent attention across multiple disciplines, especially in tourism and leisure domain. While it has already indicated a unique soundscape provides dynamic and memorable tourism experiences, a clearly mapped perspective across different segmentations of soundscapes, both natural and acoustically created, remains missing. Therefore, a comprehensive mapping and review of soundscape studies is imperative to understand its implications for potential inbound tourism research in future. This article aimed to explore potential soundscape studies by assessing trends and developments in recent decades (2013–2023). We applied a bibliometric approach, using a PRISMA framework and under NVivo 12 Plus, VOSViewer, and Biblioshiny-R-Studio software as analytical tools. Significant yield discoveries showed that tourism soundscape research is undergoing steady growth, as evidenced by quantity of publications and citation trends. Single and multi-country international collaborations characterized by soundscape outreach research playing an influential role were highlighted. We identified multiple research themes, such as anthropogenic noise and music heritage, and pointed out how we approached this research from two perspectives: environmental/natural and manufacturing/acoustics. In our review, several keywords and predominant themes were identified, which suggested soundscape studies have recently become an increasingly popular topic in tourism research. The broad spectrum of key themes, such a tourism, tourists, sustainability, areas, and development perspectives, are evidence points of significant diversity in these topics. Most importantly, our research offers significant theoretical and conceptual implications for future direction of soundscape studies. We identified three originality main focus domains in soundscape tourism research: urban and natural environments, technological advancements, and tourists’ perceptions and behaviors.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
In order to address severe siltation and enhance urban green spaces in Xianyang Lake, the research offers a sustainable solution by proposing an innovative integration of ecological dredging and landscape transformation. The key findings are as follows: Firstly, an ecological dredging mechanism was established by directly transporting sediment from Xianyang Lake to its central greenbelt, reducing dredging costs and environmental impact while creating a sustainable funding cycle through revenue from eco-tourism activities. Secondly, the landscape artistic conception of the central greenbelt was significantly improved by leveraging the natural distance between the lakeshore and the greenbelt, offering diverse viewing experiences and enhancing the cognitive abilities and urban life satisfaction of tourists. Thirdly, the project demonstrated substantial economic and social benefits, including revenue generation from paid activities like boat tours, increased public awareness of biodiversity through ecological education, and improved community well-being. The central greenbelt also enhanced the urban environment by improving air quality, mitigating the “heat island effect,” and providing habitats for wildlife. This integrated approach serves as a model for sustainable urban development, offering valuable insights for cities facing similar ecological challenges. Future research should focus on long-term monitoring to further evaluate the ecological and socio-economic impacts of such projects.
Copyright © by EnPress Publisher. All rights reserved.