Inequity in infrastructure distribution and social injustice’s effects on Ethiopia’s efforts to build a democratic society are examined in this essay. By ensuring fair access to infrastructure, justice, and economic opportunity, those who strive for social justice aim to redistribute resources in order to increase the well-being of individuals, communities, and the nine regional states. The effects that social inequity and injustice of access to infrastructure have on Ethiopia’s efforts to develop a democratic society were the focus of the study. Time series analysis using principal component analysis (PCA) and composite infrastructure index (CII), as well as structural equation modeling–partial least squares (SEM-PLS), were necessary to investigate this issue scientifically. This study also used in-depth interviews and focus group discussions to support the quantitative approach. The research study finds that public infrastructure investments have failed or have been disrupted, negatively impacting state- and nation-building processes of Ethiopia. The findings of this research also offer theories of coordination, equity, and infrastructure equity that would enable equitable infrastructure access as a just and significant component of nation-building processes using democratic federalism. Furthermore, this contributes to both knowledge and methodology. As a result, indigenous state capability is required to assure infrastructure equity and social justice, as well as to implement the state-nation nested set of policies that should almost always be a precondition for effective state- and nation-building processes across Ethiopia’s regional states.
The CO2 heat pump air conditioning system of new energy vehicle is designed, and the vehicle model of CO2 heat pump module and heat management system is established based on KULI simulation. The effects of refrigerant charge, running time and compressor speed on the heat pump air conditioning system is studied, and the energy consumption is compared with the PTC heating system and the CO2 heat pump air conditioning system without waste heat recovery. The results show that the optimal charge for full-service operation is 750 g; increasing the compressor speed can increase the cooling capacity, so that the refrigerant temperature in the passenger compartment and battery inlet can quickly reach the appropriate temperature, but the COP<sub>h</sub>, COP<sub>c</sub> are reduced by 2.5% and 1.8% respectively. By comparing it with PTC heating and CO2 heat pump air conditioning systems without waste heat recovery, it is found that the energy consumption of this system is only for the PTC heating systems 42.5%, without waste heat recovery carbon dioxide heat pump air conditioning system of 86.6%. It greatly saves energy, but also increased the waste heat recovery function, so that the system supply air temperature increased by 26%, improve passenger cabin comfort. This provides a reference for the future experimental research of CO2 heat pump air conditioning and heat management system.
The coupling coordination degree model is used to analyze the change law of the inherent coupling relationship between the forest economy and the ecological environment system in Heilongjiang Province from 2006 to 2018 and its causes. The results show that by combining the coupling relationship with the relative priority of under-forest economic development, the coupling relationship change can be divided into three stages, the coupling coordination degree from 2006 to 2009 is mainly on the verge of imbalance, and the under-forest economic development lags behind the development of the ecological environment. From 2010 to 2012, the coupling coordination degree changed from the reluctant coupling stage to the stage on the verge of imbalance, and the forest economy was ahead of the ecological environment development. From 2013 to 2018, the degree of coupling and coordination was in the reluctant coupling stage, and the under-forest economy and the ecological environment continued to develop in synchronize and in harmony. Therefore, according to the research results, it is proposed to establish the principle of ecological priority, adhere to the development of characteristics, improve the level of science and technology, and rationally develop the under-forest economic industry, so as to promote the coupling and coordinated development of the under-forest economy and ecological environment system in Heilongjiang Province.
Metamaterial perfect absorber is very important in the study of refractive index sensor. The time domain finite difference method is used to simulate the surface plasmon structure. The double nanorod periodic structure is designed, and the parameters of the top layer structure are optimized according to the impedance matching principle, and the absorption rate of the structure to the light wave reaches 99.6% when the wavelength is about 12 mm. The absorption spectroscopy of the structure is studied with the change of the refractive index of the spatial medium around the structure, and the sensitivity of the double nanorod structure is 4,008 nm/RIU, which can be used to measure the refractive index of the gas.
In this study, ‘Xinli No. 3’, ‘Shengli rootstock’, ‘Shenli rootstock’ and ‘Shengzhen No. 1’ were used as rootstock, and ‘Jinchun No. 39’ cucumber was used as scion to study the effects of different rootstock on the yield and quality of grafted cucumber, and to select high quality rootstock suitable for cucumber grafting. Different rootstock affected the survival rate, phenology, the height of plant, stem diameter, growth potential, yield and quality of cucumber grafting. Among them, the survival rate of ‘Shenli rootstock’ grafted cucumber is the highest, and the growth of ‘Shengzhen No. 1’ grafted cucumber is relatively the strongest. There was no significant difference in fruit tuber, melon edge, thorn color and pulp crispness between self-rooted seedling (CK) and each rootstock grafting combination. The average yield of ‘Xinli No. 3’ grafted cucumber plot was not significantly different from that of self-rooted seedlings (CK). The length of ‘Shenli rootstock’ and ‘Shengli rootstock’ grafted cucumber was significantly higher than that of self-rooted seedlings (CK), and the length of ‘Shengzhen No. 1’ Grafted Cucumber was significantly higher than that of self-rooted seedlings (CK). The contents of vitamin C and soluble protein of ‘Shengli rootstock’, ‘Shenli rootstock’ and ‘Shengzhen No. 1’ grafted cucumber were significantly higher than those of self-rooted seedlings (CK), and the contents of soluble sugar were lower than those of self-rooted seedlings (CK). Therefore, ‘Shengzhen No. 1’ and ‘Jinchun No. 39’ have strong compatibility with cucumber. As rootstocks, the grafted cucumber plants not only have strong growth potential and high yield, but also significantly increase the content of soluble protein and vitamin C.
Copyright © by EnPress Publisher. All rights reserved.