This paper carries out an analysis and reflection on how technoscience reaches Geography through Geographic Information Technologies, how it impacts the production of geographic knowledge and how it derives in the possibility of digital experimentation in the discipline in an environment called geo-digital reality. It is shown that advances in GIT have allowed overcoming old limitations, enriching more and more the observations made by Geography, and it is also highlighted the promising future of digital experimentation in Geography through all the possibilities offered by current technological developments.
One of the biggest environmental problems that has affected the planet is global warming, due to high concentrations of carbon (CO2), which has led to crops such as coffee being affected by climate change caused by greenhouse gases (GHG), especially by the increase in the incidence of pests and diseases. However, carbon sequestration contributes to the mitigation of GHG emissions. The objective of this work was to evaluate the carbon stored in above and below ground biomass in four six-year-old castle coffee production systems. In a trial established under a Randomized Complete Block Design (RCBD) with the treatments Coffee at free exposure (T1), Coffee-Lemon (T2), Coffee-Guamo (T3) and Coffee-Carbonero (T4), at three altitudes: below 1,550 masl, between 1,550 and 2,000 masl and above 2,000 masl. Data were collected corresponding to the stem diameters of coffee seedlings and shade trees with which allometric equations were applied to obtain the carbon variables in the aerial biomass and root and the carbon variables in leaf litter and soil obtained from their dry matter. Highly significant differences were obtained in the four treatments evaluated, with T4 being the one that obtained the highest carbon concentration both in soil biomass with 100.14 t ha-1 and in aerial biomass with 190.42 t ha-1.
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. Cisplatin-loaded nanoparticle formulations were optimized utilizing response surface methods and the central composite rotating design model. This study employed a central composite rotatable design with a three-factored factorial design with three tiers. Three independent variables namely drug polymer ratio, aqueous organic phase ration, and stabilizer concentration were used to examine the particle size, entrapment efficiency, and drug loading of cisplatin PLGA nanoparticles as responses. The results revealed that this response surface approach might be able to be used to find the best formulation for the cisplatin PLGA nanoparticles. A polymer ratio of 1:8.27, organic phase ratio of 1:6, and stabilizer concentration of 0.15 were found to be optimum for cisplatin PLGA nanoparticles. Nanoparticles made under the optimal conditions found yielded a 112 nm particle size and a 95.4 percent entrapment efficiency, as well as a drug loading of 9 percent. The cisplatin PLGA nanoparticles tailored for scanning electon microscopy displayed a spherical form. A series of in vitro tests showed that the nanoparticle delivered cisplatin progressively over time. According to this work, the Response Surface Methodology (RSM) employing the central composite rotatable design may be successfully used to simulate cisplatin-PLGA nanoparticles.
The detection of urban expansion through digital processing of satellite images provides valuable information for understanding the dynamics of land use change and its spatial relationship with environmental factors. In order to apply or generate effective land-use planning policies, it is essential to have a historical record of the regional distribution of human settlements, an element that is practically non-existent in our country. For this reason, this text aims to determine the urban growth rate during the period 2000–2014 in the state of Hidalgo, Mexico, and to identify potential expansion zones from Landsat images. Six Landsat scenes were used for the spatial analysis of the state urban coverage and their relationship with the road influence area was evaluated. Two maps were obtained as cartographic products: one of urban coverage distribution and another of the municipalities with the greatest expansion, whose areas are located in the Valle del Mezquital region. However, Mineral de la Reforma, Tetepango, Tizayuca and Pachuca de Soto stand out for their growth rates during the study period: 183.44%, 102%, 94% and 68.5%, respectively. In total, the state urban area in-creased 72.3 km2 from 2000 to 2014 with an average growth rate of 1.8% per year. Such growth was associated with the areas of influence of important road infrastructure, such as the Libramiento Arco Norte in Hidalgo. Therefore, the Mezquital Valley and the Mexico Basin are considered as potential regions for urban expansion in the state.
The importance of improving industrial transformation processes for more efficient ones is part of the current challenges. Specifically, the development of more efficient processes in the production of biofuels, where the reaction and separation processes can be intensified, is of great interest to reduce the energy consumption associated with the process. In the case of Biodiesel, the process is defined by a chemical reaction and by the components associated to the process, where the thermochemical study seeks to develop calculations for the subsequent understanding of the reaction and purification process. Thus, the analysis of the mixture of the components using the process simulator Aspen Plus V9® unravels the thermochemical study. The UNIFAC-DMD thermodynamic method was used to estimate the binary equilibrium parameters of the reagents using the simulator. The analyzed aspects present the behavior of the components in different temperature conditions, the azeotropic behavior and the determined thermochemical conditions.
This work presents the evaluation of iron oxide nanoparticles obtained from the aqueous extract of Eucalyptus grandis. Twenty-three experiments were carried out where the synthesis of nanoparticles was performed by using the aqueous extract together with salts of iron (II) chloride tetrahydrate and iron (III) chloride hexahydrate. A characterization was carried out by IR, TEM and BET, where bands were presented at 3,440.77, 1,559.26 and 445.31 cm−1, indicating the presence of iron oxide nanoparticles. A relatively high monodispersity was evidenced with particles around 9 nm. By means of BET analysis it was found to present a surface area of 131.897 m2/g. Obtaining nanoparticles by this green method presents yield values of 98%, with application in nanotechnology, biomedicine, environmental treatment, among others, making them highly versatile and their production cost is relatively low.
Copyright © by EnPress Publisher. All rights reserved.