This study conducts a comprehensive analysis of the aquaculture industry across 11 coastal regions in eastern China from 2017 to 2021 to assess their adaptability and resilience in the face of climate change. Cluster analysis was employed to examine regional variations in aquaculture adaptation by analyzing data on annual average temperatures, annual extreme high/low temperatures, annual average relative humidity, annual sunshine duration, and total yearly precipitation alongside various aquaculture practices. The findings reveal that southern regions, such as Fujian and Guangdong, demonstrate higher adaptability and resilience due to their stable subtropical climates and advanced aquaculture technologies. In contrast, northern regions like Liaoning and Shandong, characterized by more significant climatic fluctuations, exhibit varying degrees of cluster changes, indicating a continuous need to adjust aquaculture strategies to cope with climatic challenges. Additionally, the study explores the specific impacts of climate change on species selection, disease management, and water resource utilization in aquaculture, emphasizing the importance of developing region-specific strategies. Based on these insights, several strategic recommendations are proposed, including promoting species diversification, enhancing disease monitoring and control, improving water quality management techniques, and urging governmental support for policies and technical guidance to enhance the climate resilience and sustainability of the aquaculture sector. These strategies and recommendations aim to assist the aquaculture industry in addressing future climate challenges and fostering long-term sustainable development.
The rapid advancement of artificial intelligence (AI) technology is profoundly transforming the information ecosystem, reshaping the ways in which information is produced, distributed, and consumed. This study explores the impact of AI on the information environment, examining the challenges and opportunities for sustainable development in the age of AI. The research is motivated by the need to address the growing concerns about the reliability and sustainability of the information ecosystem in the face of AI-driven changes. Through a comprehensive analysis of the current AI landscape, including a review of existing literature and case studies, the study diagnoses the social implications of AI-driven changes in information ecosystems. The findings reveal a complex interplay between technological innovation and social responsibility, highlighting the need for collaborative governance strategies to navigate the tensions between the benefits and risks of AI. The study contributes to the growing discourse on AI governance by proposing a multi-stakeholder framework that emphasizes the importance of inclusive participation, transparency, and accountability in shaping the future of information. The research offers actionable insights for policymakers, industry leaders, and civil society organizations seeking to foster a trustworthy and inclusive information environment in the era of AI, while harnessing the potential of AI-driven innovations for sustainable development.
This study analyses the dynamic development of soybean (Glycine max (L.) Merr.) breeding in Russia, particularly examining its historical development, status, and future predictions. With the global demand for vegetable protein rising, understanding Russia’s potential contribution becomes crucial. This research provides valuable insights, offering precise data that may be unfamiliar to international researchers and the private sector. The authors trace the history of soybean selection in Russia, emphasizing its expansion from the Far East to other regions in Russia. The expansion is primarily attributed to the pioneering work of Soviet breeder V. A. Zolotnitsky and the development of the soybean variety in the Amur region in the 1930s. The study highlights the main areas of soybean variety originators, with approximately 40% of foreign varieties registered. The Krasnodar and Amur regions emerge as critical areas for breeding soybean varieties. In Russia, the highest yield potential of soybeans is in the Central Federal District. At the same time, the varieties registered in the Volga Federal District have higher oil content, and the Far Eastern Federal District has high protein content in the registered soybean varieties. The research outlines the state’s pivotal role in supporting soybean breeding and fostering a competitive market with foreign breeders. The study forecasts future soybean breeding development and the main factors that can influence the industry.
This comprehensive review examines recent innovations in green technology and their impact on environmental sustainability. The study analyzes advancements in renewable energy, sustainable transportation, waste management, and green building practices. To accomplish the specific objectives of the current study, the exploration was conducted using the PRISMA guidelines in major academic databases, such as Web of Science, Scopus, IEEE Xplore, and ScienceDirect. Through a systematic literature review with a research influence mapping technique, we identified key trends, challenges, and future directions in green technology. Our aggregate findings suggest that while significant progress has been made in reducing environmental impact, barriers such as high initial costs and technological limitations persist. Hence, for the well-being of societal communities, green technology innovations and practices should be adopted more widely. By investing in sustainable practices, communities can reduce environmental degradation, improve public health, and create resilient infrastructures that support both ecological and economic stability. Green technologies, such as renewable energy sources, eco-friendly construction, efficient waste management systems, and sustainable agriculture, not only mitigate pollution but also lower greenhouse gas emissions, thereby combating climate change. Finally, the paper concludes with recommendations for policymakers and industry leaders to foster the widespread adoption of green technologies.
The proportion of elderly people is growing steadily in many countries, and this trend is expected to continue. As a result, ageism—negative discrimination often tied to perceptions of the elderly—becomes especially harmful. Ageism prevents older generations from being fully accepted by society and, in turn, hinders their ability to adapt to today’s technological changes. In this article, we present the results of our survey mapping the extent of ageism among youth in Uzbekistan, known for its cultural tolerance in Central Asia, and in Hungary, a more individualistic society in Central Europe. To interpret the survey results accurately, we included specific questions to measure social desirability bias, enabling a realistic comparison of ageism levels between the two countries. Data was collected through a survey translated into multiple languages, with a final sample of nearly 400 respondents, each either currently pursuing or already holding a college-level diploma. Our methodological approach was twofold. First, we conducted simple chi-square tests to compare levels of negative and positive ageism between the two countries under study. Upon finding significant differences, we used multivariable OLS regression to explain the variance in types of ageism in Uzbekistan and Hungary, accounting for the possible effects of social desirability bias. Uzbek youth demonstrated higher levels of positive ageism and lower levels of negative ageism compared to Hungarian youth. This finding confirms that the cultural tolerance in Uzbek society remains strong and, in many ways, could serve as a model for Hungary. Additionally, our literature review highlights that adequate infrastructure is essential for a society to treat older adults equitably alongside other citizens.
Copyright © by EnPress Publisher. All rights reserved.