Air pollution in Jakarta has become a severe concern in the last four months. IQAir, in August 2023, revealed that the level of air pollution had reached 161 points on the Air Pollution Standard Index (APSI). The negative impact on society has placed air pollution as a concern for environmental safety and survival in danger. This condition will encourage the development of a national policy agenda to integrate environmental welfare through various energy efficiency channels. This research analyzes the relationship between air pollutant elements that can reduce air quality. The analysis includes pollutant intensity measured by APSI per unit of pollutant as a measure of efficiency. The aim is to observe energy use, which causes an increase in pollutant levels. This research utilizes dynamic system modeling to produce relationships between parameters to produce factors that cause pollution. The parameters used are motorized vehicles, waste burning in landfills, industry, and power plants. The results of historical behavioral tests and statistical suitability tests show that the behavior is suitable for the short and long term. The simulation results show that the pollution level will worsen by the end of 2027, a hazardous condition for society. The optimistic scenario simulation model proposes immediate counter-measures to reduce pollution to 45.01, the ideal condition. To accelerate improvements in air quality, the Government can plan policies to reduce the use of coal by power plants and industry, as well as the use of electric motorized vehicles, resulting in an ideal reduction in pollution by 2024. In conclusion, pollution can be reduced effectively if the Government firmly implements policies to maintain that air quality remains stable below 50 points.
Currently, coal resource-based cities (CRBCs) are facing challenges such as ecological destruction, resource exhaustion, and disordered urban development. By analyzing the landscape pattern, the understanding of urban land use can be clarified, and optimization strategies can be proposed for urban transformation and sustainable development. In this study, based on the interpretation of remote sensing data for three dates, the landscape pattern changes in the urban area of Huainan City, a typical coal resource-based city in Anhui Province, China were empirically investigated. The results indicate that: (1) There is a significant spatial-temporal transformation of land use, with construction land gradually replacing arable land as the dominant land use type in the region. (2) Landscape indices are helpful to reveal the characteristics of land transfer and distribution of human activities during a process. At the landscape type level, construction land, grassland, and water bodies are increasingly affected by human activities. At the landscape composition level, the number of landscape types increases, and the distribution of different types of patches becomes more balanced. In addition, to address the problems caused by the coal mining subsidence areas in Huainan city, three landscape pattern optimization strategies are proposed at both macro and micro levels. The research findings contribute to a better understanding of land use changes and their driving forces, and offer valuable alternatives for ecological environment optimization.
This paper aims to explore how to build a sustainable peace and development model for China’s peacekeeping efforts through the application of data-driven methods from UN Global Pulse. UN Global Pulse is a United Nations agency dedicated to using big data and artificial intelligence technologies to address global challenges. In this paper, we will introduce the working principles of UN Global Pulse and its application in the fields of peacekeeping and development. Then, we will discuss the current situation of China’s participation in peacekeeping operations and how data-driven methods can help China play a greater role in peacekeeping tasks. Finally, we will propose a sustainable peace and development model that combines data-driven methods with the advantages of China’s peacekeeping efforts to achieve long-term peace and development goals.
In the past, Sabah has often been reported as Malaysia’s poorest state, with the recorded highest incidence of absolute poverty among all the other states. The consumption patterns of households in Sabah have been significantly impacted by such circumstances. This further draws light on the adverse impact on the broader economy, as low levels of spending may restrict demand for products and services, stifling economic growth. The understanding of households’ consumption functions based on the Permanent Income Hypothesis (PIH) will advance knowledge in identifying the key factors that influence the households’ spending decisions. Pointing out the scant number of past studies done within this very context, and focusing on the Sabah state in particular, further motivated this study, this paper aims to develop a conceptual framework that can estimate and examine the households’ consumption functions in Sabah. As such, the methodology of drawing upon narrative reviews from research in the past will be used in this paper to develop the conceptual framework. The result of this study built upon the framework developed will help in identifying the factors that explain the households’ consumption patterns, in particular, whether the function estimated will be consistent with the Permanent Income Hypothesis (PIH). It is hoped that the conceptual framework built will aid in providing valuable empirical insight for policymakers in designing effective policies that can uplift households that are living in poverty.
Copyright © by EnPress Publisher. All rights reserved.