Research into electro-conductive textiles based on conductive polymers like polypyrrole has increased in recent years due to their high potential applications in various fields. Conductive polymers behave like insulators in their neutral states, with typical electrical conductivity in the range 10–10 to 10–25 Scm–1. These neutral polymers can be converted into semi-conductive or conductive states with conductivities ranging from 1 Scm–1 to 10–4 Scm–1 through chemical or electro-chemical redox reactions. By applying these polymers to a textile surface, we can obtain novel composites that are strong, flexible, lightweight, and highly electroconductive. These textile composites are suitable for applications such as heating pads, sensors, corrosion-protecting materials, actuators, electrochromic devices, EMI shielding, etc. The methods of application of conductive polymers onto the textile surface, such as in-situ chemical, in-situ electrochemical, in-situ vapor phase, in-situ polymerization in a supercritical fluid, and solution coating processes, are described here briefly. The merits and demerits of these methods are mentioned here. The reaction mechanisms of chemical and electrochemical polymerization proposed by the different researchers are described. Different factors affecting the kinetics of chemical and electrochemical polymerization are accounted for. The influence of textile materials on the kinetics of chemical polymerization is reviewed and reported.
Universities play a key role in university-industry-government interactions and are important in innovation ecosystem studies. Universities are also expected to engage with industries and governments and contribute to economic development. In the age of artificial intelligence (AI), governments have introduced relevant policies regarding the AI-enabled innovation ecosystem in universities. Previous studies have not focused on the provision of a dynamic capabilities perspective on such an ecosystem based on policy analysis. This research work takes China as a case and provides a framework of AI-enabled dynamic capabilities to guide how universities should manage this based on China’s AI policy analysis. Drawing on two main concepts, which are the innovation ecosystem and dynamic capabilities, we analyzed the importance of the AI-enabled innovation ecosystem in universities with governance regulations, shedding light on the theoretical framework that is simultaneously analytical and normative, practical, and policy-relevant. We conducted a text analysis of policy instruments to illustrate the specificities of the AI innovation ecosystem in China’s universities. This allowed us to address the complexity of emerging environments of innovation and draw meaningful conclusions. The results show the broad adoption of AI in a favorable context, where talents and governance are boosting the advance of such an ecosystem in China’s universities.
This study aimed to analyze government policies in education during the Covid-19 pandemic and how teachers exercised discretion in dealing with limitations in policy implementation. This research work used the desk review method to obtain data on government policies in the field of education during the Covid-19 pandemic. In addition, interviews were conducted to determine the discretion taken in implementing the learning-from-home policy. There were three learning models during the pandemic: face-to-face learning in turns (shifts), online learning, and home visits. Online learning policies did not work well at the pandemic’s beginning due to limited infrastructure and human resources. To overcome various limitations, the government provided internet quota assistance and curriculum adjustments and improved online learning infrastructure. The discretion taken by the teachers in implementing the learning-from-home policy was very dependent on the student’s condition and the availability of the internet network. The practical implication of this research is that street-level bureaucrats need to pay attention to discretionary standards when deciding to provide satisfaction to the people they serve.
The direct expansion heat pump with solar energy is an energy conversion system used for water heating applications, air heating for air conditioning buildings, water desalination, solar drying, among others. This paper reviews the main designs and analysis of experiments in order to identify the fundamental objectives of any experiment which may be: to determine the factors that have a significant influence, to obtain a mathematical model and/or to optimize performance. To achieve this task, the basic and advanced configuration of this system is described in detail in order to characterize its thermal performance by means of energy analysis and/or exergy-based analysis. This review identifies possible lines of research in the area of design and analysis of experiments to develop this water heating technology for industrial applications.
Due to the lack of clear regulation of management accounting at the state level in Russia, the authors conducted a study based on an analysis of information sources, an expert survey on their reliability, and a case method, which resulted in a reporting form compiled for the production process of an agro-industrial enterprise (grain products) as part of inter-organizational company cooperation. The developed management reporting system (composed of eight consecutive stages: standard reports, specialized reports, itemized query reports, notification reports, statistical reports, prognostic reports, modeling results reports, and process optimization reports), on one hand, allows solving a set of tasks to increase the competitiveness of Russian agro-industrial enterprises within the framework of inter-organizational management accounting. On the other hand, the introduction of ESG principles into the management reporting system (calculation of the environmental (E) index, which assesses the company’s impact on the natural ecosystem and covers emissions and efficient use of natural resources in the agricultural production process) increases the level of control and minimizes the risks of an unfair approach of individual partners to environmental issues.
The conversion of the energy supply to renewable sources (wind, photovoltaics) will increase the volatility in electricity generation in the future. In order to ensure a balanced power balance in the power grid, storage is required - not only for a short time, but also seasonally. The bidirectional coupling of existing energy infrastructure with the power grid can help here by using the electricity in electrolysis systems to produce hydrogen. The hydrogen can be mixed with natural gas in the existing infrastructure (gas storage, pipelines) to a limited extent or converted directly to methane in a gas-catalytic reaction, methanation, with carbon dioxide and/or carbon monoxide. By using the natural gas infrastructure, the electricity grids are relieved and renewable energies can also be stored over long periods of time. Another advantage of this technology, known as “Power-to-Gas”, is that the methane produced in this way represents a sink for CO2 emissions, as it replaces fossil sources and CO2 is thus fed into a closed cycle.
Research in the field of Power-to-Gas technology is currently addressing technological advances both in the field of electrolysis and for the subsequent methanation, in particular to reduce investment costs. In the field of methanation, load-flexible processes are to be developed that are adapted to the fluctuating supply of hydrogen. The profitability of the Power-to-Gas process chain can be increased through synergistic integration into existing industrial processes. For example, an integrated smelting works offers a promising infrastructural environment, since, on the one hand, process gases containing carbon are produced in large quantities and, on the other hand, the oxygen as a by-product from the water electrolysis can be used directly. Such concepts suggest an economic application of Power-to-Gas technology in the near future.
Copyright © by EnPress Publisher. All rights reserved.