This paper is the third in a series focused on bridging the gap between secondary and higher education. Our primary objective is to develop a robust theoretical framework for an innovative e-business model called the Undergraduate Study Programme Search System (USPSS). This system considers multiple criteria to reduce the likelihood of exam failure or the need for multiple retakes, while maximizing the chances of successful program completion. Testing of the proposed algorithm demonstrated that the Stochastic Gradient Boosted Regression Trees method outperforms the current method used in Lithuania for admitting applicants to 47 educational programs. Specifically, it is more accurate than the Probabilistic Neural Network for 25 programs, the Ensemble of Regression Trees for 24 programs, the Single Regression Tree for 18 programs, the Random Forest Regression for 16 programs, the Bayesian Additive Regression Trees for 13 programs, and the Regression by Discretization for 10 programs.
Balancing broad learning outcomes in graduate programs with detailed classroom learning outcomes is increasingly crucial in education systems. This study employs a qualitative paradigm through a case study method to address the gap between learning outcomes at the graduate program level and those at the course level. Using the ESSENTIA CURRICULUM framework—a curriculum design methodology derived from software engineering practices—we propose an innovative and adaptable approach for aligning program-wide and course-specific learning outcomes. The ESSENTIA CURRICULUM, named for its focus on the “essence of the curriculum”, is applied to the ICT for Research course within the M.Sc. program in University Teaching at the University of Nariño. This framework fosters a consistent educational journey centered on learning achievements and demonstrates its effectiveness through a comprehensive self-assessment process and stakeholder feedback. The implications of this research are twofold: it highlights the potential of adopting interdisciplinary methodologies for curriculum design and provides a scalable and alternative strategy for harmonizing learning outcomes across diverse educational contexts. By bridging principles from software engineering into education, this novel approach offers new avenues for improving curriculum coherence and applicability.
This study analyzes the perception of university students regarding the use of virtual reality (VR) in higher education, focusing on their level of knowledge, usage, perceived advantages and disadvantages, as well as their willingness to use this technology in the future. Using a mixed-methods approach that combines questionnaires and semi-structured interviews, both quantitative and qualitative data were collected to provide a comprehensive view of the subject. The results indicate that while students have a basic understanding of VR, its use in the educational context is limited. A considerable number of students recognize VR’s potential to enhance the learning experience, particularly in terms of immersion and engagement. However, significant barriers to adoption were identified, such as technical issues, the high cost of equipment, and inadequate access to technological infrastructure. Additionally, there is a need for broader training for both students and faculty to ensure the effective use of this technology in academic environments. The semi-structured interviews confirmed that perceptions of VR vary depending on prior exposure to the technology and access to resources. Despite the challenges, most students appreciate VR’s potential to enrich learning, although its effective adoption will depend on overcoming the identified barriers. The study concludes that strategies must be implemented to facilitate the integration of VR into higher education, thus optimizing its impact on the teaching-learning process.
As a group of college students who are about to enter social life and have a certain impact on socio-economic and technological development, their concepts and qualities will have a significant impact on social development. Therefore, in a complex and ever-changing social environment, schools should pay attention to educating college students in aspects such as their values, high moral literacy, and political awareness. Schools can take ideological and political education as the foundation, comprehensively educate students through the construction of a good academic atmosphere, and cultivate them into application-oriented high-quality talents. Based on this, this article mainly studies the construction methods of college students' academic style from the perspective of ideological and political education in the new era.
Improving the practical skills of Science, Technology, Engineering and Mathematics (STEM) students at a historically black college and university (HBCU) was done by implementing a transformative teaching model. The model was implemented on undergraduate students of different educational levels in the Electrical Engineering (EE) Department at HBCU. The model was also extended to carefully chosen high and middle schools. These middle and high school students serve as a pipeline to the university, with a particular emphasis on fostering growth within the EE Department. The model aligns well with the core mission of the EE Department, aiming to enhance the theoretical knowledge and practical skills of students, ensuring that they are qualified to work in industry or to pursue graduate studies. The implemented model prepares students for outstanding STEM careers. It also increases enrolment, student retention, and the number of underrepresented minority graduates in a technology-based workforce.
Copyright © by EnPress Publisher. All rights reserved.