A theory of many-body wave scattering is developed under the assumption a << d << λ, where a is the characteristic size of the small body, d is the distance between neighboring bodies and λ is the wave-length in the medium in which the bodies are embedded. The multiple scattering is essential under these assumptions. The author’s theory is used for creating materials with a desired refraction coefficient. This theory can be used in practice. A recipe for creating materials with a desired refraction coefficient is formulated. Materials with a desired radiation pattern, for example, wave-focusing materials, can be created.
Under the background of green economic transformation, the sustainable utilization of ecological resources has become a trend, and bamboo all-for-one tourism has become a new development direction for bamboo-resource-rich areas. Based on the all-for-one tourism model and characteristics of bamboo resources, this paper puts forward a bamboo all-for-one tourism model, which shows the relationship between resources, products, and markets, and elaborates on the joint effect mechanism of industrial environment, governance environment, and external environment. Taking Yibin City, Sichuan Province as an example, this paper also analyzes existing problems of developing bamboo all-for-one tourism and then proposes suggestions to provide effective analytical ideas and reference, such as establishing a market-oriented all-product development model, introducing the sustainable development concept of bamboo management, establishing the management concept of sharing by all people, and driving all industries developing in a coordinated way.
This paper reviews the emerging potential of mid-tier transit, articulating how a complex set of established and new factors could contribute both to better transit outcomes and the associated urban regeneration around station precincts. The analysis is based on two structured literature reviews, supported by insights from the authors’ original research. The first provides an overview of the established and new rationale for mid-tier technologies such as the established Light Rail Transit (LRT) and Bus Rapid Transit (BRT) as well as the new Trackless Tram Systems (TTS). The established role for mid-tier transit is now being given extra reasons for it to be a major focus of urban infrastructure especially due to the need for net zero cities. The second review, is a detailed consideration of established and new factors that can potentially improve patronage on mid-tier transit. The established factors of urban precinct design like stop amenities and improved accessibility and density around stations, are combined with new smart technology systems like advanced intelligent transport systems and real-time transport information for travellers, as well as new transport technologies such as micro-mobility and Mobility on Demand. Also explored are new processes with funding and development models that properly leverage land value capture, public private partnerships, and other entrepreneurial development approaches that are still largely not mainstreamed. All were found to potentially work, especially if done together, to help cities move into greater mid-tier transit.
In recent years, using novel nanomaterials to improve the antifouling and antibacterial performance of reverse osmosis membranes has received much attention. In this study, hydrophilic Ag@ZnO-hyperbranched polyglycerols nanoparticles were fabricated by ring-opening multibranched polymerization of glycidyl acid with the core-shell Ag@ZnO nanoparticles. The cellulose triacetate composite membranes were prepared by grafting Ag@ZnO-HPGs nanoparticles on the surface of cellulose triacetate membranes. The surface of the nanoparticles with active functional group –OH was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Surface morphology, charge, and hydrophilicity of the composite membranes were characterized by scanning electron microscope, zeta potential, and contact angle analysis. The results showed that grafting the Ag@ZnO-HPGs nanoparticles onto the cellulose triacetate membrane surface improved the physical and chemical properties of the cellulose triacetate composite membranes. The water flux of cellulose triacetate composite membranes increased while the salt rejection rate to NaCl slightly decreased. Meanwhile, the cellulose triacetate composite membranes showed excellent antifouling properties of having a high flux recovery. The antibacterial performance of the cellulose triacetate composite membrane against E. coli and S. aureus was prominent that the antibacterial rates were 99.50% and 92.38%, and bacterial adhesion rates were as low as 19.12% and 21.35%, respectively.
A failsafe network design recovering from the stressed condition against a massive supply disruption is generally useful for various applications. Water flow in plants under a tension is inherently vulnerable to an embolism, a water supply cut off, causing a death. However, the function of the network structures of leaf veins and xylem stems effectively reduces the embolism-induced failure. In this study, water transport in plants under the pressurized conditions compared to the normal physiological conditions is observed by X-ray imaing. By examining embolism-induced water supply limits in the architecturally diverse leaf and stem networks, a progressive hydraulic rule has been found: the limited flows in the selected parts of the network structures against a total fail. For a scientific explanation on nanoscale water flow dynamics occurring in plants, temporal meniscus development in the nanomembrane model system is investigated. The pressure-driven hydrodynamic transport phenomena can be explained to follow network dynamics of the modified imbibition typically occuring in nanostrutcures. This study contributes to a variety of design technologies of networked materials against the spread of flow damages under the stressed conditions.
Copyright © by EnPress Publisher. All rights reserved.