Vehicle detection stands out as a rapidly developing technology today and is further strengthened by deep learning algorithms. This technology is critical in traffic management, automated driving systems, security, urban planning, environmental impacts, transportation, and emergency response applications. Vehicle detection, which is used in many application areas such as monitoring traffic flow, assessing density, increasing security, and vehicle detection in automatic driving systems, makes an effective contribution to a wide range of areas, from urban planning to security measures. Moreover, the integration of this technology represents an important step for the development of smart cities and sustainable urban life. Deep learning models, especially algorithms such as You Only Look Once version 5 (YOLOv5) and You Only Look Once version 8 (YOLOv8), show effective vehicle detection results with satellite image data. According to the comparisons, the precision and recall values of the YOLOv5 model are 1.63% and 2.49% higher, respectively, than the YOLOv8 model. The reason for this difference is that the YOLOv8 model makes more sensitive vehicle detection than the YOLOv5. In the comparison based on the F1 score, the F1 score of YOLOv5 was measured as 0.958, while the F1 score of YOLOv8 was measured as 0.938. Ignoring sensitivity amounts, the increase in F1 score of YOLOv8 compared to YOLOv5 was found to be 0.06%.
The challenge of rural electrification has become more challenging today than ever before. Grid-connected and off-grid microgrid systems are playing a very important role in this problem. Examining each component’s ideal size, facility system reactions, and other microgrid analyses, this paper proposes the design and implementation of an off-grid hybrid microgrid in Chittagong and Faridpur with various load dispatch strategies. The hybrid microgrids with a load of 23.31 kW and the following five dispatch algorithms have been optimized: (i) load following, (ii) HOMER predictive, (iii) combined dispatch, (iv) generator order, and (v) cycle charging dispatch approach. The proposed microgrids have been optimized to reduce the net present cost, CO2 emissions, and levelized cost of energy. All five dispatch strategies for the two microgrids have been analyzed in HOMER Pro. Power system reactions and feasibility analyses of microgrids have been performed using ETAP simulation software. For both the considered locations, the results propound that load-following is the outperforming approach, which has the lowest energy cost of $0.1728/kWh, operational cost of $2944.13, present cost of $127,528.10, and CO2 emission of 2746 kg/year for the Chittagong microgrid and the lowest energy cost of $0.2030/kWh, operating cost of $3530.34, present cost of 149,287.30, and CO2 emission of 3256 kg/year for the Faridpur microgrid with a steady reaction of the power system.
In this paper, we introduce some certain fuzzy soft algebraic notions of generalized concepts in LA-Γ-semigroups and study some properties of their families.
Copyright © by EnPress Publisher. All rights reserved.