This work shows the results of the biosynthesis of silver nanoparticles using the microalga Chlorella sp, using growth media with different concentrations of glycerol, between 5%–20%, and different light and temperature conditions. The synthesis of nanoparticles was studied using supernatants and pellets from autotrophic, heterotrophic and mixotrophic cultures of the microalga. The presence of nanoparticles was verified by ultraviolet-visible spectroscopy and the samples showing the highest concentration of nanoparticles were characterized by scanning electron microscopy. The mixotrophic growth conditions favored the excretion of exopolymers that enhanced the reduction of silver and thus the formation of nanoparticles. The nanoparticles obtained presented predominantly ellipsoidal shape with dimensions of 108 nm × 156 nm and 87 nm × 123 nm for the reductions carried out with the supernatants of the mixotrophic cultures with 5% and 10% glycerol, respectively.
Japan’s investment in the domestic construction industry has fallen to less than half its peak in 1992. Given the country’s declining population, Japanese construction companies must go global to remain profitable. To what extent the Japanese government and Japanese companies can contribute to meeting the growing infrastructure needs in the region is unclear as Japanese companies have long been operating primarily in Japan. The Japanese government has in recent years passed a series of new laws that encourage private sector participation in financing, building and operating public infrastructure. Through involvement in such public projects, Japanese companies have developed the skills and technologies to build a variety of infrastructures that are resilient to natural disasters and adaptable to various geographical conditions and social and economic development. But the major challenge for Japanese companies is to transform their business model drastically from one that relies on the domestic market to one that contributes to the social and economic development of third countries.
In the domains of geological study, natural resource exploitation, geological hazards, sustainable development, and environmental management, lithological mapping holds significant importance. Conventional approaches to lithological mapping sometimes entail considerable effort and difficulties, especially in geographically isolated or inaccessible regions. Incorporating geological surveys and satellite data is a powerful approach that can be effectively employed for lithological mapping. During this process, contemporary RS-enhancing methodologies demonstrate a remarkable proficiency in identifying complex patterns and attributes within the data, hence facilitating the classification of diverse lithological entities. The primary objective of this study is to ascertain the lithological units present in the western section of the Sohag region. This objective will be achieved by integrating Landsat ETM+ satellite imagery and field observations. To achieve our objectives, we employed many methodologies, including the true and false color composition (FCC&TCC), the minimal noise fraction (MNF), principal component analysis (PCA), decoration stretch (DS), and independent component analysis (ICA). Our findings from the field investigation and the data presented offer compelling evidence that the distinct lithological units can be effectively distinguished. A recently introduced geology map has been incorporated within the research area. The sequence of formations depicted in this map is as follows: Thebes, Drunka, Katkut, Abu Retag, Issawia, Armant, Qena, Abbassia, and Dandara. Implementing this integrated technique enhances our comprehension of geological units and their impacts on urban development in the area. Based on the new geologic map of the study area, geologists can improve urban development in the regions by detecting building materials “aggregates”. This underscores the significance and potential of our research in the context of urban development.
Europium (Eu) doped Calcium borophosphate (CBP) phosphors were synthesized via the solid-state diffusion method. The prepared Europium (Eu) doped Calcium borophosphate (CBP) powder was heated up to 600 ℃ for 6 h for a complete diffusion of ions in the powder system. XRD results showed that the prepared phosphors exhibit a well-crystallized hexagonal phase. The complete diffusion inside the CBP/Eu powder system has been confirmed by the presence of elements such as P, O, Bi, Ca, C, Eu, and B. Apart from that, the synthesized powder system has shown a down-conversion property where the Eu3+-activated ion was excited at 251 nm. Under the excitation of 251 nm, CBP/Eu phosphor showed intense emissions peaking at 591,617, and 693 nm due to the 5D0 → 7F1, 5D0 → 7F2, and 5D0 → 7F4 transition of Eu3+ ions. The obtained results suggest that the CBP/Eu phosphors have the potential for spectral response coating materials to improve photovoltaic (PV) panel efficiency.
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. Cisplatin-loaded nanoparticle formulations were optimized utilizing response surface methods and the central composite rotating design model. This study employed a central composite rotatable design with a three-factored factorial design with three tiers. Three independent variables namely drug polymer ratio, aqueous organic phase ration, and stabilizer concentration were used to examine the particle size, entrapment efficiency, and drug loading of cisplatin PLGA nanoparticles as responses. The results revealed that this response surface approach might be able to be used to find the best formulation for the cisplatin PLGA nanoparticles. A polymer ratio of 1:8.27, organic phase ratio of 1:6, and stabilizer concentration of 0.15 were found to be optimum for cisplatin PLGA nanoparticles. Nanoparticles made under the optimal conditions found yielded a 112 nm particle size and a 95.4 percent entrapment efficiency, as well as a drug loading of 9 percent. The cisplatin PLGA nanoparticles tailored for scanning electon microscopy displayed a spherical form. A series of in vitro tests showed that the nanoparticle delivered cisplatin progressively over time. According to this work, the Response Surface Methodology (RSM) employing the central composite rotatable design may be successfully used to simulate cisplatin-PLGA nanoparticles.
Copyright © by EnPress Publisher. All rights reserved.