This study analyzes the impact of a high-speed rail line on tax revenues and on the economy of affected regions within the country. The economic impact of infrastructure investment can be induced by changes in tax revenues when the infrastructure is in operation. Accurate regional GDP data are not necessarily available in many Asian countries. However, tax data can be collected. Therefore, this study uses tax revenue dates in order to estimate spillover effects of infrastructure investment. The Kyushu high-speed rail line was constructed in 1991 and was completed in 2003. In 2004, the rail line started operating from Kagoshima to Kumamoto. The entire line was opened in 2011. We estimated its impact in the Kyushu region of Japan by using the differencein- difference method, and compared the tax revenues of regions along the high-speed railway line with other regions that were not affected by the railway line. Our findings show a positive impact on the region’s tax revenue following the connection of the Kyushu rapid train with large cities, such as Osaka and Tokyo. Tax revenue in the region significantly increased during construction in 1991–2003, and dropped after the start of operations in 2004–2010. The rapid train’s impact on the neighboring prefectures of Kyushu is positive. However, in 2004–2013, its impact on tax revenue in places farther from the rapid train was observed to be lower. When the Kyushu railway line was connected to the existing high-speed railway line of Sanyo, the situation changed. The study finds statistically significant and economically growing impact on tax revenue after it was completed and connected to other large cities, such as Osaka and Tokyo. Tax revenues in the regions close to the high-speed train is higher than in adjacent regions. The difference-in-difference coefficient methods reveal that corporate tax revenue was lower than personal income tax revenue during construction. However, the difference in corporate tax revenues rose after connectivity with large cities was completed. Public–private partnership (PPP) has been promoted in many Asian countries. However, PPP-infrastructure in India failed in many cases due to the low rate of return from infrastructure investment. This study shows that an increase of tax revenues is significant in the case of the Kyushu rapid train in Japan. If half of the incremental tax revenues were returned to private investors in infrastructure, the rate of return from infrastructure investment would significantly rise for long period of time. It would attract stable and long-term private investors, such as pension funds and insurance funds into infrastructure investment. The last section of the paper will address how incremental tax revenues created by the spillover effects of infrastructure will improve the performance of private investors in infrastructure investment.
Problem: in recent years, new studies have been published on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields as used in magnetic resonance imaging (MRI). Many of these studies have not yet been incorporated into current safety recommendations. Method: scientific publications from 2010 onwards on the biological effects of static and electromagnetic fields of MRI were searched and evaluated. Results: new studies confirm older work that has already described effects of static magnetic fields on sensory organs and the central nervous system accompanied by sensory perception. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular organ. Recent studies on thermal effects of radiofrequency fields focused on the development of anatomically realistic body models and more accurate simulation of exposure scenarios. Recommendation for practice: strong static magnetic fields can cause unpleasant perceptions, especially dizziness. In addition, they can impair the performance of the medical personnel and thus potentially endanger patient safety. As a precaution, medical personnel should move slowly in the field gradient. High-frequency electromagnetic fields cause tissues and organs to heat up in patients. This must be taken into account in particular for patients with impaired thermoregulation as well as for pregnant women and newborns; exposure in these cases must be kept as low as possible.
Copyright © by EnPress Publisher. All rights reserved.