In the context of establishing businesses in a new region, neglecting environmental orientation may lead to the omission of crucial motives for entrepreneurs’ migration and the subsequent course of their businesses. This present study aims to investigate the effect of green space quality (GSQ), green campaign (GC), and green attitude (GA) on green entrepreneurship pioneering intention (GEPI). Further, national pride (NP) was added as a moderator. This study utilized a cross-sectional approach using a survey method targeting small and medium-sized enterprise (SME) owners who will be relocated to the new capital city. Partial least square structural equation modeling was employed in the data analysis. The results revealed that GSQ, GC, and GA positively influence GEPI. Also, NP moderates the positive influences of GC and GA on GEPI. Entrepreneurs were motivated to pioneer green entrepreneurship in the new region due to environmental factors. Furthermore, their nationalism reinforces the connection between environmental motivations and the aspirations to undertake such pioneering endeavors. The findings present valuable insights for governments to formulate policies that encourage entrepreneurs to migrate internally and establish new economic nodes. Further, the results demonstrate how nationalism encourages green business pioneering endeavors in an untapped market.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
The study aims to explore the extent to which Jordanian e-news sites rely on artificial intelligence applications in their news content. The researchers will use a media survey methodology, and the sample will consist of 45 editors-in-chief and editors from 10 Jordanian news sites, namely: Ammon, Khabrny, Joe24, Saraya, Amman Net, Jafra, Crown News, Petra, Kingdom, and Roya. The researcher will use an electronic questionnaire, which led to several findings, the most significant of which are: Many news and media sites have introduced artificial intelligence systems to enhance the services they provide to the public. A significant number of journalistic and electronic media websites have shown interest in data analysis tools for their media services. Electronic news sites are clearly striving to improve their capabilities in using artificial intelligence technologies to enhance the services they provide to the Jordanian audience. Additionally, most electronic media websites have expressed a willingness to develop a plan to improve cybersecurity systems to protect against hacking and intrusion attempts, safeguarding their data and the AI systems that operate continuously.AI systems in media organizations also aim to enhance the news experience for users by enriching media services with modern, communicative content.
Indonesia has ratified United Nations Convention on the Law of the Sea 1982 (UNCLOS 1982) through Law No. 17 of 1985 concerning the ratification of the 1982 Law of the Sea Convention, thus binding Indonesia to the rights and obligations to implement the provisions of the 1982 convention, including the establishment of the three Northern-Southern Indonesia’s Archipelagic Sea Lane (ALKI). The existence of the three ALKI routes, including ALKI II, has led to various potential threats. These violations not only cause material losses but, if left unchecked and unresolved, can also affect maritime security stability, both nationally and regionally. The maritime security and resilience challenges in ALKI II have increased with the relocation of the capital, which has become the center of gravity, to East Kalimantan. The research in this article aims to identify and analyze the factors influencing the success of maritime security and resilience strategies in ALKI II. The factors used in this research include conceptual components, physical components, moral components, command and control center capabilities, operational effectiveness, command and control effectiveness, and the moderating variables of resource multiplier management and risk management to achieve maritime security and resilience. This study employed a mixed-method research approach. The factors are modeled using Structural Equation Modeling (SEM) with WarpPLS 8.0 software. Qualitative data analysis used the Soft System Methodology (SSM). The results of the study indicate that the aforementioned factors significantly influence the success of achieving maritime security and resilience in ALKI II.
The development of artificial intelligence (AI) and 5G network technology has changed the production and lifestyle of people. AI also has promoted the transformation of talent training mode under the integration of college industry and education. In the context of the current transformation of education, AI and 5G networks are increasingly used in the education industry. This paper optimizes and upgrades the training mode of skilled talents in higher vocational colleges by using its advanced methods and technologies of information display. This means is helpful to analyze and solve a series of objective problems such as the single training form of the current talent training mode. This paper utilizes the principles and laws of industry university research (IUR) collaboration for reference to construct and optimize the talent training mode based on the analysis of the requirements of talent training and the role of each subject in talent training. Then, the ecological talent training environment can be realized. In the analysis of talent training mode under the cooperation of production and education, the correlation coefficients of network construction, environment construction, scientific research funds, scientific research level, and policy support were 0.618, 0.576, 0.493, 0.785, and 0.451, respectively. This showed that the scientific research level had the greatest impact on talent training in the talent training mode of IUR collaboration, while policy support had less impact on talent training compared with other factors. The combination of AI and 5G network technology with the talent training mode of IUR cooperation can effectively analyze the influencing factors and problems of the talent training mode. The hybrid method is of great significance to the talent training strategy and fitting degree.
The successful execution of large-scale infrastructure projects is essential for economic growth and societal development, but these projects are too often beset with financial risks. The main financial risks related to infrastructure projects, including cost overrun, funding uncertainty, currency fluctuation, and regulatory change are examined in this research. The study identifies and assesses the magnitude and frequency of these risks by combining surveys and analysis of financial reports. The findings show that current risk management strategies, including hedging, contingency funds, and public-private partnerships, are often unsuitable to respond to the specific needs of financial uncertainties. The research suggests the need for an all-encompassing financial risk management framework that relies on real-time data analysis and a cocktail of risk assessment tools. Additionally, the development of strategic tailored approaches to address financial risk recovery depends on proactive stakeholder engagement. This research complements the existing literature on risk management in infrastructure projects by highlighting the financial dimensions of risk management and suggesting future research on advanced financial tools and technologies. Ultimately, large-scale infrastructure project sustainability and success contribute to economic stability and societal well-being can only be achieved through effective financial risk management.
Copyright © by EnPress Publisher. All rights reserved.