The objective of this work was to analyze the effect of the use of ChatGPT in the teaching-learning process of scientific research in engineering. Artificial intelligence (AI) is a topic of great interest in higher education, as it combines hardware, software and programming languages to implement deep learning procedures. We focused on a specific course on scientific research in engineering, in which we measured the competencies, expressed in terms of the indicators, mastery, comprehension and synthesis capacity, in students who decided to use or not ChatGPT for the development and fulfillment of their activities. The data were processed through the statistical T-Student test and box-and-whisker plots were constructed. The results show that students’ reliance on ChatGPT limits their engagement in acquiring knowledge related to scientific research. This research presents evidence indicating that engineering science research students rely on ChatGPT to replace their academic work and consequently, they do not act dynamically in the teaching-learning process, assuming a static role.
This article provides an account of the tourism in Petra encompassing its development from the time of the Nabataean Kingdom until the early 20th century. It delves into the factors that sparked tourism travel routes taken, security measures implemented, and influential individuals who have shaped Petra’s tourism history. Located at a juncture in the Middle East, Petra has consistently fascinated people with its sense of adventure. The city’s historical importance as a trade hub and a melting pot for cultural exchanges during the Nabataean era laid a strong foundation for its enduring charm. The skillful navigation of trade routes and effective marketing strategies employed by the Nabataean Kingdom played a role in establishing Petra as an irresistible destination for travelers. Supported by findings and ancient records it becomes evident that extensive trade networks flourished during this period highlighting the city’s role in the region. Its allure transcended generations captivating observers from Greece to its rediscovery by Burckhardt (1818–1897).
This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
The research aimed to: 1) analyze components and indicators of digital transformation leadership among school administrators, 2) assess their leadership needs, and 3) develop mechanism models to promote this leadership. A mixed-method approach was applied, involving three sample groups: 8 experts, 406 administrators, and 7 experts. Data collection tools included semi-structured interviews, leadership scales, needs assessments, and focus group discussions, with analysis performed through construct validity testing, needs assessment, and content analysis. The findings revealed: 1) The components and indicators of digital transformation leadership showed structural validity, as confirmed by the model’s alignment with empirical data (Chi-Square = 82.3, df = 65, p = 0.072, CFI = 0.998, TLI = 0.997, RMR = 0.00965, RMSEA = 0.0256). 2) Among the leadership components, “innovative knowledge” ranked highest in need (PNImodified = 0.075), followed by “ideological influence” (0.066), “consideration of individuality” (0.055), “intellectual stimulation” (0.052), and “inspiration” (0.053). 3) Mechanism models for promoting leadership emphasized enhancing these five components to strengthen administrators’ skills in applying technology, managing teaching and development plans, and fostering innovation. Administrators were encouraged to tailor strategies to individual needs, inspire personnel, and create a commitment to organizational change and development. These mechanisms aim to equip administrators to effectively lead transformations, motivate staff, and drive educational institutions to adapt and thrive in evolving environments.
The process of internationalization and innovation (IPI) in the urban road passenger transport (URPT) sector is driven by the need to provide cities with efficient and sustainable mobility solutions. The objective of this study is to understand the perceptions of URPT employees in relation to PII, based on a comprehensive case study. By exploring how these two concepts interrelate and influence each other, the study seeks to provide valuable information that can help improve strategic planning and policy formulation in the urban transport sector. The research, based on semi-structured interviews with 20 employees, reveals significant gaps in internal communication, with only about half of the participants aware of ongoing national and international projects. Information was often limited to those directly involved, indicating a need for improved dissemination strategies. Despite these communication issues, employees positively view the company’s presence at international events and recognize the importance of involvement in European organizations, particularly for knowledge acquisition and networking. Challenges identified include inadequate internal communication and insufficient investment in international projects. However, there was strong agreement on the value of internationalization and innovation process (IIP) for both professional development and organizational growth. To enhance the company’s international presence and return on investment (ROI), the study recommends better coordination, improved information sharing, and strategic planning. These findings emphasize the critical role of effective communication and active participation in international initiatives for the sustainable growth of the organization.
STEAM (science, technology, engineering, arts, and mathematics) education has recently been encouraged and attracted much national attention. This qualitative study aimed to conduct a thematic analysis of college student STEAM open responses to provide an examination of college students’ perceptions of their STEAM experiences into the STEAM field. Based on transformative learning theory, a thematic analysis of 756 written responses to seven prompts by 108 college student participants revealed three primary themes: (1) exciting and challenging difficulties, and transdisciplinary learning in STEAM; (2) STEAM learning of gradual process, problem-oriented instruction, and creative problem solving; and (3) metacognition development in STEAM. The findings revealed that undergraduates’ STEAM perceptions provide strong support for STEAM implementation to enhance teaching effectiveness in higher education.
Copyright © by EnPress Publisher. All rights reserved.