The implementation of government decentralization in Indonesia is facing regulatory problems for autonomous regions’ financing sources. Therefore, attention to regional finance is increasingly needed given that autonomous regions are required to carry out various central government interests in addition to their affairs. This leads to a split of power over financing development policy by the regional government. However, this does not mean that the local government’s financial needs must be free from the central government’s intervention. This study briefly compares financing regional autonomy in Indonesia, France, Germany and Thailand. The results show that the distribution of financial resources between the central government and regional governments is inconsistent with Article 18A section 2 of Law No.1/2022. The results also show that the provisions of various sources of taxation and levy have not met the financial needs of regions in Indonesia. Financial balance in the form of Natural Resources Production Sharing Fund from various natural resources owned by regions that only share unrenewable resources such as mining excavated materials remains unequally distributed between regions that have natural resources.
Objective: To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and cirrhotic nodules via radiomics models based on magnetic resonance images. Background: This study is to distinguish hepatocellular carcinoma and cirrhotic nodules using MR-radiomics features extracted from four different phases of MRI images, concluded T1WI, T2WI, T2 SPIR and delay phase of contrast MRI. Methods: In this study, the four kind of magnetic resonance images of 23 patients with hepatocellular carcinoma (HCC) were collected. Among them, 12 patients with liver cirrhosis were used to obtain cirrhotic nodules (CN). The dataset was used to extract MR-radiomics features from regions of interest (ROI). The statistical methods of MRradiomics features could distinguish HCC and CN. And the ability of radiomics features between HCC and CN was estimated by receiver operating characteristic curve (ROC). Results: A total of 424 radiomics features were extracted from four kind of magnetic resonance images. 86 features in delay phase of contrast MRI,86 features in spir phase of T2WI,86 features in T1WI and 88 features in T2WI showed statistical difference (p < 0.05). Among them, the area under the curves (AUC) of these features larger than 0.85 were 58 features in delay phase of contrast MRI, 54 features in spir phase of T2WI, 62 features in T1WI and 57 features in T2WI. Conclusions: Radiomics features extracted from MRI images have the potential to distinguish HCC and CN.
Due to rising global environmental challenges, air/water pollution treatment technologies, especially membrane techniques, have been focused on. In this context, air or purification membranes have been considered effective for environmental remediation. In the field of polymeric membranes, high-performance polymer/graphene nanocomposite membranes have gained increasing research attention. The polymer/graphene nanomaterials exposed several potential benefits when processed as membranes. This review explains the utilization of polymer and graphene-derived nanocomposites towards membrane formation and water or gas separation or decontamination properties. Here, different membrane designs have been developed depending upon the polymer types (poly(vinyl alcohol), poly(vinyl chloride), poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), etc.) and graphene functionalities. Including graphene in polymers influences membrane microstructure, physical features, molecular permeability or selectivity, and separations. Polysulfone/graphene oxide nanocomposite membranes have been found to be most efficient with an enhanced rejection rate of 90%–95%, a high water flux >180 L/m2/h, and a desirable water contact angle for water purification purposes. For gas separation membranes, efficient membranes have been reported as polysulfone/graphene oxide and poly(dimethyl siloxane)/graphene oxide nanocomposites. In these membranes, N2, CO2, and other gases permeability has been found to be higher than even >99.9%. Similarly, higher selectivity values for gases like CO2/CH4 have been observed. Thus, high-performance graphene-based nanocomposite membranes possess high potential to overcome the challenges related to water or gas molecular separations.
Accurate temperature control during the induction heating process of carbon fiber reinforced polymer (CFRP) is crucial for the curing effect of the material. This paper first builds a finite element model of induction heating, which combines the actual fiber structure and resin matrix, and systematically analyzes the heating mechanism and temperature field distribution of CFRP during the heating process. Based on the temperature distribution and variation observed in the material heating process, a PID control method optimized by the sparrow search algorithm is proposed, which effectively reduces the temperature overshoot and improves the response speed. The experiment verifies the effectiveness of the algorithm in controlling the temperature of the CFRP plate during the induction heating process. This study provides an effective control strategy and research method to improve the accuracy of temperature control in the induction heating process of CFRP, which helps to improve the results in this field.
Copyright © by EnPress Publisher. All rights reserved.