Cellulose nanocrystal, known as CNCs, is a form of material that can be produced by synthesizing carbon from naturally occurring substances, such as plants. Due to the unique properties it possesses, including a large surface area, impressive mechanical strength, and the ability to biodegrade, it draws significant attention from researchers nowadays. Several methods are available to prepare CNC, such as acid hydrolysis, enzymatic hydrolysis, and mechanical procedures. The characteristics of CNC include X-ray diffraction, transmission electron microscopy, dynamic light scattering, etc. In this article, the recent development of CNC preparation and its characterizations are thoroughly discussed. Significant breakthroughs are listed accordingly. Furthermore, a variety of CNC applications, such as paper and packaging, biological applications, energy storage, etc., are illustrated. This study demonstrates the insights gained from using CNC as a potential environmentally friendly material with remarkable properties.
Scientists have harnessed the diverse capabilities of nanofluids to solve a variety of engineering and scientific problems due to high-temperature predictions. The contribution of nanoparticles is often discussed in thermal devices, chemical reactions, automobile engines, fusion processes, energy results, and many industrial systems based on unique heat transfer results. Examining bioconvection in non-Newtonian nanofluids reveals diverse applications in advanced fields such as biotechnology, biomechanics, microbiology, computational biology, and medicine. This study investigates the enhancement of heat transfer with the impact of magnetic forces on a linearly stretched surface, examining the two-dimensional Darcy-Forchheimer flow of nanofluids based on blood. The research explores the influence of velocity, temperature, concentration, and microorganism profile on fluid flow assumptions. This investigation utilizes blood as the primary fluid for nanofluids, introducing nanoparticles like zinc oxide and titanium dioxide (. The study aims to explore their interactions and potential applications in the field of biomedicine. In order to streamline the complex scheme of partial differential equations (PDEs), boundary layer assumptions are employed. Through appropriate transformations, the governing partial differential equations (PDEs) and their associated boundary conditions are transformed into a dimensionless representation. By employing a local non-similarity technique with a second-degree truncation and utilizing MATLAB’s built-in finite difference code (bvp4c), the modified model’s outcomes are obtained. Once the calculated results and published results are satisfactorily aligned, graphical representations are used to illustrate and analyze how changing variables affect the fluid flow characteristics problems under consideration. In order to visualize the numerical variations of the drag coefficient and the Nusselt number, tables have been specially designed. Velocity profile of -blood and -blood decreases for increasing values of and , while temperature profile increases for increasing values of and . Concentration profile decreases for increasing values of , and microorganism profile increases for increasing values of . For rising values of and the drag coefficient increases and the Nusselt number decreases for rising values of and The model introduces a novel approach by conducting a non-similar analysis of the Darchy-Forchheimer bioconvection flow of a two-dimensional blood-based nanofluid in the presence of a magnetic field.
With the advancement of modernization, commoditization and grassroots governance have become important terms. Community governance not only promotes modern democracy but plays a key role in improving community governance capabilities and modernizing the governance system, which is receiving much attention. Despite the expanding number of articles on community governance, few evaluations investigate its evolution, tactics, and future goals. As a result, the particular goal of this study is to provide the findings of a thematic analysis of community governance research. Investigating the skills and procedures needed for practice-based community government. Data for this study were gathered through a thematic assessment of 66 papers published between 2018 and 2023. The pattern required by the researchers was provided by the ATLS.ti23 code used to record the review outcomes. This study proposes six central themes: 1) rural advancement, 2) community (social) capital, 3) public health and order governance, 4) governance technology, 5) sustainable development, and 6) governance model. The research results show that the research trend of community governance should focus on rural advancement, taking rural community governance as the starting point, the dilemma and adjustment of the governance model, community public health and order governance, and digital governance. It will yield new insights into new community governance standards and research trends.
The present study demonstrates the fabrication of heterogeneous ternary composite photocatalysts consisting of TiO2, kaolinite, and cement (TKCe),which is essential to overcome the practical barriers that are inherent to currently available photocatalysts. TKCe is prepared via a cost-effective method, which involves mechanical compression and thermal activation as major fabrication steps. The clay-cement ratio primarily determines TKCe mechanical strength and photocatalytic efficiency, where TKCe with the optimum clay-cement ratio, which is 1:1, results in a uniform matrix with fewer surface defects. The composites that have a clay-cement ratio below or above the optimum ratio account for comparatively low mechanical strength and photocatalytic activity due to inhomogeneous surfaces with more defects, including particle agglomeration and cracks. The TKCe mechanical strength comes mainly from clay-TiO2 interactions and TiO2-cement interactions. TiO2-cement interactions result in CaTiO3 formation, which significantly increases matrix interactions; however, the maximum composite performance is observed at the optimum titanate level; anything above or below this level deteriorates composite performance. Over 90% degradation rates are characteristic of all TKCe, which follow pseudo-first-order kinetics in methylene blue decontamination. The highest rate constant is observed with TKCe 1-1, which is 1.57 h−1 and is the highest among all the binary composite photocatalysts that were fabricated previously. The TKCe 1-1 accounts for the highest mechanical strength, which is 6.97 MPa, while the lowest is observed with TKCe 3-1, indicating that the clay-cement ratio has a direct relation to composite strength. TKCe is a potential photocatalyst that can be obtained in variable sizes and shapes, complying with real industrial wastewater treatment requirements.
In an era characterized by technological advancement and innovation, the emergence of Electronic Government (e-Government) and Mobile Government (m-Government) represents significant developments. Previous studies have explored acceptance models in this domain. This research presents a novel acceptance model tailored to the context of m-Government adoption in Jordan, integrating the Information System (IS) Success Factor Model, Hofstede’s Cultural Dimensions Theory, and considerations for law enforcement factors. The primary objective of this study is to investigate the strategies for promoting and enhancing the adoption of m-Government applications within Jordanian society. Data collection involved the distribution of 203 electronic questionnaires, with subsequent analysis conducted using SPSS. The findings reveal the acceptance and significance of three hypotheses: Information Quality, Service Quality, and Power Distance. Additionally, the study incorporates the influence of Law Enforcement factors, contributing to a comprehensive understanding of the multifaceted determinants shaping the adoption of m-Government services in Jordan.
Copyright © by EnPress Publisher. All rights reserved.