This comprehensive review examines recent innovations in green technology and their impact on environmental sustainability. The study analyzes advancements in renewable energy, sustainable transportation, waste management, and green building practices. To accomplish the specific objectives of the current study, the exploration was conducted using the PRISMA guidelines in major academic databases, such as Web of Science, Scopus, IEEE Xplore, and ScienceDirect. Through a systematic literature review with a research influence mapping technique, we identified key trends, challenges, and future directions in green technology. Our aggregate findings suggest that while significant progress has been made in reducing environmental impact, barriers such as high initial costs and technological limitations persist. Hence, for the well-being of societal communities, green technology innovations and practices should be adopted more widely. By investing in sustainable practices, communities can reduce environmental degradation, improve public health, and create resilient infrastructures that support both ecological and economic stability. Green technologies, such as renewable energy sources, eco-friendly construction, efficient waste management systems, and sustainable agriculture, not only mitigate pollution but also lower greenhouse gas emissions, thereby combating climate change. Finally, the paper concludes with recommendations for policymakers and industry leaders to foster the widespread adoption of green technologies.
Distributed Energy Resources (DERs), such as solar photovoltaic (PV) systems, wind turbines, and energy storage systems, offer many benefits, including increased energy efficiency, sustainability, and grid reliability. However, their integration into the smart grid also introduces new vulnerabilities to cyber threats. The smart grid is becoming more digitalized, with advanced technologies like Internet of Things (IoT) devices, communication networks, and automation systems that enable the integration of DER systems. While this enhances grid efficiency and control, it creates more entry points for attackers and thus expands the attack surface for potential cyber threats. Protecting DERs from cyberattacks is crucial to maintaining the overall reliability, security, and privacy of the smart grid. The adopted cybersecurity strategies should not only address current threats but also anticipate future dangers. This requires ongoing risk assessments, staying updated on emerging threats, and being prepared to adapt cybersecurity measures accordingly. This paper highlights some critical points regarding the importance of cybersecurity for Distributed Energy Resources (DERs) and the evolving landscape of the smart grid. This research study shows that there is need for a proactive and adaptable cybersecurity approach that encompasses prevention, detection, response, and recovery to safeguard these critical energy systems against cyber threats, both today and in the future. This work serves as a valuable tool in enhancing the cybersecurity posture of utilities and grid-connected DER owners and operators. It allows them to make informed decisions, protect critical infrastructure, and ensure the reliability and security of grid-connected DER systems in an evolving energy landscape.
The potential role of self-regulated learning as mediator has been deeply investigated by researchers in recent years. There is limited systematic literature review being done to investigate the role of self-regulated learning as mediator in the students’ academic learning. Therefore, searching studies in the databases WOS (Web of Science), SCOPUS, APA (American Psychological Association) PsycInfo, and ERIC (Education Resources Information Center), the present study conducted a systematic literature review on 32 studies published between 2015 and 2024 to summarize what kind of psychological factors influence students’ academic performance through self-regulated learning and assess the potential mediating role of self-regulated learning in this process. The results show that self-efficacy, emotions and motivation are significant predictors of academic achievement and self-regulated learning act as an important mediator in this relationship. An important implication was obtained that researchers can probe into the influence of specific dimensions of self-efficacy on learning performance through self-regulated learning and the influence of positive emotions such as resilience on learning outcomes with self-regulated learning as mediator.
The power of Artificial Intelligence (AI) combined with the surgeons’ expertise leads to breakthroughs in surgical care, bringing new hope to patients. Utilizing deep learning-based computer vision techniques in surgical procedures will enhance the healthcare industry. Laparoscopic surgery holds excellent potential for computer vision due to the abundance of real-time laparoscopic recordings captured by digital cameras containing significant unexplored information. Furthermore, with computing power resources becoming increasingly accessible and Machine Learning methods expanding across various industries, the potential for AI in healthcare is vast. There are several objectives of AI’s contribution to laparoscopic surgery; one is an image guidance system to identify anatomical structures in real-time. However, few studies are concerned with intraoperative anatomy recognition in laparoscopic surgery. This study provides a comprehensive review of the current state-of-the-art semantic segmentation techniques, which can guide surgeons during laparoscopic procedures by identifying specific anatomical structures for dissection or avoiding hazardous areas. This review aims to enhance research in AI for surgery to guide innovations towards more successful experiments that can be applied in real-world clinical settings. This AI contribution could revolutionize the field of laparoscopic surgery and improve patient outcomes.
As a product of the integration of AI technology and media, the debate surrounding the potential replacement of human anchors by AI anchors has persisted since their inception. This paper conducts a systematic literature review of research on AI anchors in China from 2000 to 2023, grounded in theories of personalization within the field of communication studies. The analysis aims to compare the differences in personalized representation between AI anchors and human anchors, summarizing the advancements, challenges, and future directions of AI anchor communication based on personality. This contribution seeks to enhance the existing knowledge base surrounding AI anchor research.
Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
Copyright © by EnPress Publisher. All rights reserved.