In order to effectively reduce the workload of primary and secondary school students and the burden of off-campus training, and promote the effective improvement of the teaching and education level of schools at all levels and types, the General Office of the Central Committee of the Communist Party of Opinions on Students' Homework Burden and Off-campus Training Burden" (referred to as "double reduction"). Students' homework practice is a supplement and continuation of classroom teaching, which can consolidate and promote the quality of students' learning. This paper analyzes some problems in the design of primary school Chinese homework from three aspects, such as homework volume, homework type, and homework arrangement, and puts forward corresponding strategies for the optimization path of primary school Chinese homework design under the background of "double reduction".
COVID-19 pandemic has caused many design bid build projects to suffer losses. Design bid build or DBB has the disadvantage of depth partnering. The research purpose is to reveal the depth of partnering of DBB, the characteristics of existing partnering in DBB through detection in each project life cycle in DBB, then efforts to increase DBB partnering to partnering in integrated project delivery (IPD). The methodology used is secondary data from three project DBB, then validation using focused group discussions (FGD) with expert judgment, then the Delphi method to analyse and propose recommendations. This project recommends that DBB project can improve the project performance so stakeholder can increase partnering toward integrated project delivery (IPD) partnering. This research can be used for increasing partnering in DBB projects towards partnering in IPD. This research will produce strategic recommendations that can be utilized by stakeholders (owner, contractor, designer) in improving project performance to generate great value for the project, will result in long-term project sustainability, improve relationships, and learn valuable lessons for future projects. DBB projects usually experience many problems due to the competitive nature of partnering for owners, contractors, and designers, so it is necessary to develop an overall strategy as an option to improve partnering in DBB project contracts. This research will help create a sustainable project by the owner, contractor, and designer.
Attempts were made in the present study to design and develop skeletally modified ether linked tetraglycidyl epoxy resin (TGBAPSB), which is subsequently reinforced with different weight percentages of amine functionalized mullite fiber (F-MF). The F-MF was synthesized by reacting mullite fiber with 3-aminopropyltriethoxysilane (APTES) as coupling agent and the F-MF structure was confirmed by FT-IR. TGBAPSB reinforced with F-MF formulation was cured with 4,4’-diamino diphenyl methane (DDM) to obtain nanocomposite. The surface morphology of TGBAPSB-F-MF epoxy nanocomposites was investigated by XRD, SEM and AFM studies. From the study, it follows that these nanocomposite materials offer enhancement in mechanical, thermal, thermo-mechanical, dielectric properties compared to neat (TGBAPSB) epoxy matrix. Hence we recommend these nanocomposites for a possible use in advanced engineering applications that require both toughness and stiffness.
In this paper, a solar tracking device that can continuously track the sun by adjusting the direction and angle of the solar panel in real time is designed and fabricated to improve the power generation efficiency of the solar cell panel. The mechanical parts as well as the automatic control part of the passive sun-tracking system are described, and the efficiency enhancement with the sun-tracking solar panel is characterized in comparison with the fixed panel system. The test results show that in the spring season in Qingdao city of eastern China, the sun-tracking system can improve the solar cell power generation efficiency by 28.5%–42.9% when comparing to the direction and elevation angle fixed system in sunny days. Even in partly cloudy days, the PV power output can increased by 37% with using the passive sun-tracking system. Economic analysis results show the cost-benefit period is about 10 years, which indicates that the passive sun tracking device can substantially contribute to the solar energy harvest practices.
The curriculum reform in 2022 puts forward new requirements for the professional literacy cultivation of primary science teachers, and the cultivation of primary science classroom teaching skills is an important aspect of the professional literacy cultivation of science education teachers, mainly including subject knowledge and teaching theory, teaching design and preparation, teaching methods and strategies. On the basis of following the principle of combining theory and practice, diversified teaching and student subjectivity, the training strategies of group cooperative learning, observing the teaching process of excellent teachers, and strengthening the effect of micro-grid teaching are proposed, and in addition to the expected evaluation, it provides a certain theoretical basis for the cultivation of normal students in science education.
Copyright © by EnPress Publisher. All rights reserved.