In the realm of modern education, the integration of technology has emerged as a powerful catalyst for transforming traditional classrooms into dynamic and engaging learning environments. This paper provides a concise overview of the multifaceted ways in which technology contributes to enhanced classroom engagement.
Fire hazard is often mapped as a static conditional probability of fire characteristics’ occurrence. We developed a dynamic product for operational risk management to forecast the probability of occurrence of fire radiative power in the locally possible near-maximum fire intensity range. We applied standard machine learning techniques to remotely sensed data. We used a block maxima approach to sample the most extreme fire radiative power (FRP) MODIS retrievals in free-burning fuels for each fire season between 2001 and 2020 and associated weather, fuel, and topography features in northwestern south America. We used the random forest algorithm for both classification and regression, implementing the backward stepwise repression procedure. We solved the classification problem predicting the probability of occurrence of near-maximum wildfire intensity with 75% recall out-of-sample in ten annual test sets running time series cross validation, and 77% recall and 85% ROC-AUC out-of-sample in a twenty-fold cross-validation to gauge a realistic expectation of model performance in production. We solved the regression problem predicting FRP with 86% r2 in-sample, but out-of-sample performance was unsatisfactory. Our model predicts well fatal and near-fatal incidents reported in Peru and Colombia out-of-sample in mountainous areas and unimodal fire regimes, the signal decays in bimodal fire regimes.
The expanding adoption of artificial intelligence systems across high-impact sectors has catalyzed concerns regarding inherent biases and discrimination, leading to calls for greater transparency and accountability. Algorithm auditing has emerged as a pivotal method to assess fairness and mitigate risks in applied machine learning models. This systematic literature review comprehensively analyzes contemporary techniques for auditing the biases of black-box AI systems beyond traditional software testing approaches. An extensive search across technology, law, and social sciences publications identified 22 recent studies exemplifying innovations in quantitative benchmarking, model inspections, adversarial evaluations, and participatory engagements situated in applied contexts like clinical predictions, lending decisions, and employment screenings. A rigorous analytical lens spotlighted considerable limitations in current approaches, including predominant technical orientations divorced from lived realities, lack of transparent value deliberations, overwhelming reliance on one-shot assessments, scarce participation of affected communities, and limited corrective actions instituted in response to audits. At the same time, directions like subsidiarity analyses, human-cent
This research focused on the design and implementation of the flipped classroom approach for higher mathematics courses in medical colleges. Out of 120 students, 60 were assigned to the experimental group and 60 to the control group. In the continuous assessment, which included homework and quizzes, the average score of the experimental group was 85.5 ± 5.5, while that of the control group was 75.2 ± 8.1 (P < 0.05). For the final examination, the average score in the experimental group was 88.3 ± 6.2, compared to 78.1 ± 7.3 in the control group (P < 0.01). The participation rate of students in the experimental group was 80.5%, significantly higher than the 50.3% in the control group (P < 0.001). Regarding autonomous learning ability, the experimental group spent an average of 3.2 hours per week on self-study, compared to 1.5 hours in the control group (P < 0.005). Other potential evaluation indicators could involve the percentage of students achieving high scores (90% or above) in problem-solving tasks (25.8% in the experimental group vs. 10.3% in the control group, P < 0.05), and the improvement in retention of key concepts after one month (70.2% in the experimental group vs. 40.5% in the control group, P < 0.01). In conclusion, the flipped classroom approach holds substantial promise in elevating the learning efficacy of higher mathematics courses within medical colleges, offering valuable insights for educational innovation and improvement.
The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Copyright © by EnPress Publisher. All rights reserved.