This research implements sustainable environmental practices by repurposing post-industrial plastic waste as an alternative material for non-conventional construction systems. Focusing on the development of a recycled polymer matrix, the study produces panels suitable for masonry applications based on tensile and compressive stress performance. The project, conducted in Portoviejo and Medellín, comprises three phases combining bibliographic and experimental research. Low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP) were processed under controlled temperatures to form a composite matrix. This material demonstrates versatile applications upon cooling—including planks, blocks, caps, signage, and furniture (e.g., chairs). Key findings indicate optimal performance of the recycled thermoplastic polymer matrix at a 1:1:1 ratio of LDPE, HDPE, and PP, exhibiting 15% deformation. The proposed implementation features 50 × 10 × 7 cm panels designed with tongue-and-groove joints. When assembled into larger plates, these panels function effectively as masonry for housing construction, wall cladding, or lightweight fill material for slab relieving.
This research delves into the correlation between institutional quality and tourism development in a panel of nine Mediterranean countries within the European Union spanning from 1996 to 2021. The study gauges tourism development by examining tourist arrivals, while considering GDP growth rate, inflation, higher education, environmental quality, and trade as control variables representing factors influencing tourism. Institutional quality is measured through indicators such as regulatory quality, rule of law, and control of corruption. Utilizing Fully Modified Ordinary Least Square (FMOLS) and Dynamic Ordinary Least Squares (DOLS) models, the study aims to quantify the impact of these factors on tourism development. The findings indicate a positive relationship between institutional quality and tourism, shedding light on the pivotal role of institutions in tourism management and their influence on the sector. These results have implications for shaping national development strategies.
The COVID-19 pandemic has fundamentally transformed the global education landscape, compelling institutions to adopt e-learning as an essential tool to sustain academic activities. This research examines the critical impact of e-learning on arts and science college students in Coimbatore, with an emphasis on its influence on their readiness for campus recruitment. Using a survey of 300 students, this study investigates their perceptions of online education, highlighting both its advantages, such as flexibility and accessibility, and its challenges, including engagement barriers and technical limitations. Data was collected through structured questionnaires and analyzed using statistical methods to draw meaningful insights. The research also explores the efficacy of online assessments in recruitment processes and assesses students’ awareness of available e-learning platforms and courses. The urgency of this study lies in addressing the pressing need to optimize digital education models as institutions globally transition toward blended learning post-pandemic. The findings underline the dual potential and limitations of e-learning, concluding with actionable recommendations to enhance its effectiveness, particularly in preparing students for competitive employment opportunities.
Beach protection is vital to reduce the damage to shorelines and coastal areas; one of the artificial protections that can be utilized is the tetrapod. However, much damage occurred when using a traditional tetrapod due to the lack of stability coefficient (KD). Therefore, this research aims to increase the stability coefficient by providing minor modifications to the cape of the tetrapod, such as round-caped or cube-caped. The modification seeks to hold the drag force from the wave and offer a good interlocking in between the tetrapod. This research applied physical model test research using a breakwater model made from the proposed innovative tetrapod with numerous variations in dimensions and layers simulated with several scenarios. The analysis was carried out by graphing the relationship between the parameters of the measurement results and the relationship between dimensionless parameters, such as wave steepness H/gT2, and other essential parameters, such as the KD stability number and the level of damage in %. The result shows that the modified and innovative tetrapod has a more excellent KD value than the conventional tetrapod. In addition, the innovative tetrapod with the cube-shaped has a recommended KD value greater than the round shape. This means that for the modified tetrapod structure and the same level of security, the required weight of the tetrapod with the cube cap will be lighter than the tetrapod with the round cap. These findings have significant practical implications for coastal protection and engineering, potentially leading to more efficient and cost-effective solutions.
Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.
Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.
Copyright © by EnPress Publisher. All rights reserved.