This study explores the scale efficiency of four star hotels in a small tourist destination in Croatia. The number of overnight stays and the increase in hotel beds are two indicators of the development of a tourist destination. Among the accommodation facilities, hotels play a significant role in the development of a tourist destination, but they are increasingly facing a labor force crisis. Data envelopment analysis is used to rank hotels by efficiency coefficient. The aim of the paper is to investigate the efficiency of the hotel by taking certain inputs and outputs, which are explained in detail in the paper. The paper uses the CCR (Charnes, Cooper, and Rhodes) and BCC (Banker, Charnes, and Cooper) models to calculate hotel scale efficiency and also presents an overview of previous research around the world.
Since 2013, the state has introduced a number of policies to strictly control the number and scale of public hospitals and to control the rapid expansion of public hospitals. After the introduction of this series of policies, the number of public hospitals in China did not continue to grow, but the number of beds in public hospitals continued to grow. This paper uses difference-in-difference (DID) method to analyze the number of public hospitals with the corresponding data of the development of private hospitals after the introduction of the policy, and the results proves that the introduction of relevant policies has an impact on the number of public hospitals, but has a limited impact on the expansion of the scale of public hospitals. At the end of the article, positive policy suggestions are given to the development of hospitals in China, such as controlling the expansion of public hospitals, strictly controlling the number of beds in public hospitals, and vigorously developing private hospitals. Promoting the development of private hospitals is an important economic supplement to China’s health care.
Urban infrastructures and services—such as public transportation, innovation bodies and environmental services—are important drivers for the sustainable development of our society. How effectively citizens, institutions and enterprises interact, how quickly technological innovations are implemented and how carefully new policies are pursued, synergically determine development. In this work, data related to urban infrastructure features such as patents and recycled waste referred to 106 province areas in Italy are investigated over a period of twenty years (2001–2020). Scaling laws with exponents characterizing the above mentioned features are observed and adopted to scrutinize whether and how multiple interactions within a population have amplification effects on the recycling and innovation performance. The study shows that there is a multiplication effect of the population size on the innovation performance of territories, meaning that the dynamic interactions among the elements of the innovation eco-systems in a territory increase its innovation performance. We discuss how to use such approach and the related indexes for understanding metropolitan development policy.
Identify and diagnosis of homogenous units and separating them and eventually planning separately for each unit are considered the most principled way to manage units of forests and creating these trustable maps of forest’s types, plays important role in making optimum decisions for managing forest ecosystems in wide areas. Field method of circulation forest and Parcel explore to determine type of forest require to spend cost and much time. In recent years, providing these maps by using digital classification of remote sensing’s data has been noticed. The important tip to create these units is scale of map. To manage more accurate, it needs larger scale and more accurate maps. Purpose of this research is comparing observed classification of methods to recognize and determine type of forest by using data of Land Cover of Modis satellite with 1 kilometer resolution and on images of OLI sensor of LANDSAT satellite with 30 kilometers resolution by using vegetation indicators and also timely PCA and to create larger scale, better and more accurate resolution maps of homogenous units of forest. Eventually by using of verification, the best method was obtained to classify forest in Golestan province’s forest located on north-east of country.
This paper provides a comprehensive review of SURF (speeded up robust features) feature descriptor, commonly used technique for image feature extraction. The SURF algorithm has obtained significant popularity because to its robustness, efficiency, and invariance to various image transformations. In this paper, an in-depth analysis of the underlying principles of SURF, its key components, and its use in computer vision tasks such as object recognition, image matching, and 3D reconstruction are proposed. Furthermore, we discuss recent advancements and variations of the SURF algorithm and compare it with other popular feature descriptors. Through this review, the aim is to provide a clear understanding of the SURF feature descriptor and its significance in the area of computer vision.
Copyright © by EnPress Publisher. All rights reserved.