Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
The study intends to identify the existing implementation bottlenecks that hamper the effectiveness of the Ethiopian forest policy and laws in regional states by focusing on the Oromia Regional State. It attempts to address the question, “What are the challenges for the effective implementation of the federal forest policy and law in Ethiopia in general and Oromia Regional State in particular?”. The study followed a qualitative research approach, and the relevant data was collected through in-depth interviews from 11 leaders and experts of the policy, who were purposively selected. Furthermore, relevant documents such as the constitutions, forest policies and laws, and government documents were carefully reviewed. Based on this, the study found that there is the dichotomy between the provision of the constitution regarding the forest policy and lawmaking and the constitutional amendment on one hand and the push for genuine decentralization in the Ethiopian federal state on the other. To elaborate, the constitution is rigid for amendment, and it has given the power of forest policy and lawmaking to the federal government. On the other hand, the quest for genuine decentralization requires these powers to be devolved to the regional states. As the constitution is rigid, this may continue to be the major future challenge of the forest policy and lawmaking of the state. This demonstrates a conflict of interests between the two layers of governments, i.e., the federal and regional (Oromia Regional State) governments. Respecting and practicing the constitution may be the immediate solution to this pressing problem.
Given the increasing demand for sustainable energy sources and the challenges associated with the limited efficiency of solar cells, this review focuses on the application of gold quantum dots (AuQDs) in enhancing solar cell performance. Gold quantum dots, with their unique properties such as the ability to absorb ultraviolet light and convert it into visible light expand the utilization of the solar spectrum in solar cells. Additionally, these quantum dots, through plasmonic effects and the enhancement of localized electric fields, improve light absorption, charge carrier generation (electrons and holes), and their transfer. This study investigates the integration of quantum dots with gold plasmonic nanoparticles into the structure of solar cells. Experimental results demonstrate that using green quantum dots and gold plasmonic nanoparticles as intermediate layers leads to an increase in power conversion efficiency. This improvement highlights the significant impact of this technology on solar cell performance. Furthermore, the reduction in charge transfer resistance and the increase in short-circuit current are additional advantages of utilizing this technology. The findings of this research emphasize the high potential of gold quantum dots in advancing next-generation solar cell technology.
Copyright © by EnPress Publisher. All rights reserved.