Increasing number of smart cities, the rise of technology and urban population engagement in urban management, and the scarcity of open data for evaluating sustainable urban development determines the necessity of developing new sustainability assessment approaches. This study uses passive crowdsourcing together with the adapted SULPiTER (Sustainable Urban Logistics Planning to Enhance Regional freight transport) methodology to assess the sustainable development of smart cities. The proposed methodology considers economic, environmental, social, transport, communication factors and residents’ satisfaction with the urban environment. The SULPiTER relies on experts in selection of relevant factors and determining their contribution to the value of a sustainability indicator. We propose an alternative approach based on automated data gathering and processing. To implement it, we build an information service around a formal knowledge base that accumulates alternative workflows for estimation of indicators and allows for automatic comparison of alternatives and aggregation of their results. A system architecture was proposed and implemented with the Astana Opinion Mining service as its part that can be adjusted to collect opinions in various impact areas. The findings hold value for early identification of problems, and increasing planning and policies efficiency in sustainable urban development.
The recent development of characteristic towns has encountered a multitude of challenges and chaos. Nevertheless, there have been many instances of information asymmetry due to the absence of an effective management model and an intuitive digital management system. Consequently, this has caused the erosion of public interests and inadequate supervision by public agencies. As society is progressing at a rapid pace, there is a growing apprehension regarding poor management synergy, outdated management practices, and limited use of technology in traditional construction projects. In today's technologically sophisticated society characterized by the “Internet+” and intelligent management, there is an urgent requirement to identify a more efficient collaborative management model, thereby reducing errors caused by information asymmetry. This paper focuses on the integration of building information modeling (BIM) and integrated project delivery (IPD) for collaborative management within characteristic towns in the PPP mode. By analyzing the available literature on the application status, this study investigates the implementation methods and framework construction of collaborative management while exploring the advantages and disadvantages. On this basis, this study highlights the problems that arise and provides recommendations for improvement. Considering this, the application of the BIM-based IPD model to characteristic towns in PPP mode will enhance the effectiveness of collaborative management among all parties involved, thereby fostering an environment that facilitates decision-making and operational management in the promotion of characteristic industries.
Transportation projects are crucial for the overall success of major urban, metropolitan, regional, and national development according to their capacity by bringing significant changes in socio-economic and territorial aspects. In this context, sustaining and developing economic and social activities depend on having sufficient Water Resources Management. This research helps to manage transport project planning and construction phases to analyze the surface water flow, high-level streams, and wetland sites for the development of transportation infrastructure planning, implementation, maintenance, monitoring, and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. A case study was carried out using the Arc Hydro extension within ArcGIS for processing and presenting the spatially referenced Stream Model. Geographical information systems have the potential to improve water resource planning and management. The study framework would be useful for solving water resource problems by enabling decision makers to collect qualitative data more effectively and gather it into the water management process through a systematic framework.
Copyright © by EnPress Publisher. All rights reserved.