The electro-magnetic (EM) waves transmitted through a thin object with fine structures are observed by a microsphere located above the thin object. The EM radiation transmitted through the object produces both evanescent waves, which include information on the fine structures of the object (smaller than a wavelength), and propagating waves, which include the large image of the object (with dimensions larger than a wavelength). The super-resolutions are calculated by using the Helmholtz equation. According to this equation, evanescent waves have an imaginary component of the wavevector in the z direction, leading the components of the wavevector in the transversal directions to become very large so that the fine structures of the object can be observed. Due to the decay of the evanescent waves, only a small region near the contact point between the thin object and the microsphere is effective for producing the super resolution effects. The image with super-resolution can be increased by a movement of the microsphere over the object or by using arrays of microspheres. Both propagating and evanescent waves arrive at the inner surface of the microsphere. A coupling between the transmitted EM waves and resonances produced in the dielectric sphere, possibly obtained by the Mie method, leads to a product of the EM distribution function with the transfer function. While this transfer function might be calculated by the Mie method, it is also possible to use it as an experimental function. By Fourier transform of the above product, we get convolution between the EM spatial modes and those of the transfer function arriving at the nano-jet, which leads the evanescent waves to become propagating waves with effective very small wavelengths and thus increase the resolution.
Global transformational processes associated with the geopolitical fragmentation of the world, changes in supply chains, and the emergence of threats to food, energy, logistics security, etc. have impacted the increase in the freight traffic volumes through the Ukraine-European Union (Ukraine-EU) land border section. In this context, the transport and logistics infrastructure on this section of the border was inadequate for the growing demand for international freight transport, leading to huge economic, social, and environmental damage to all participants in foreign trade. The aim of this paper is to study the efficiency of the functioning of the transport and logistics infrastructure on the Ukraine-EU border section. The taxonomy used in the paper made it possible to look into economic, security, geopolitical, logistics, transport, legal, and political factors shaping the freight traffic volumes, structure, and routes; their key trends and impact on the generation of freight traffic are described. Statistical analysis of freight traffic by border sections and with respect to border crossing points allowed the identification of bottlenecks in the functioning of the transport and logistics infrastructure and outlining ways to address them. The results of the study will be helpful both to researchers working on the issues of freight transport and to policymakers involved in transport and border infrastructure development.
In the era of artificial intelligence, smart clothing, as a product of the interaction between fashion clothing and intelligent technology, has increasingly attracted the attention and affection of enterprises and consumers. However, to date, there is a lack of focus on the demand of silver-haired population’s consumers for smart clothing. To adapt to the rapidly aging modern society, this paper explores the influencing factors of silver-haired population’s demand for smart clothing and proposes a corresponding consumer-consumption-need theoretical model (CCNTM) to further promote the development of the smart clothing industry. Based on literature and theoretical research, using the technology acceptance model (TAM) and functional-expressive-aesthetic consumer needs model (FEAM) as the foundation, and introducing interactivity and risk perception as new external variables, a consumer-consumption-need theoretical model containing nine variables including perceived usefulness, perceived ease of use, functionality, expressiveness, aesthetics, interactivity, risk perception, purchase attitude, and purchase intention was constructed. A questionnaire survey was conducted among the Chinese silver-haired population aged 55–65 using the Questionnaire Star platform, with a total of 560 questionnaires issued. The results show that the functionality, expressiveness, interactivity, and perceived ease of use of smart clothing significantly positively affect perceived usefulness (P < 0.01); perceived usefulness, perceived ease of use, aesthetics, and interactivity significantly positively affect the purchase attitude of the silver-haired population (P < 0.01); perceived usefulness, aesthetics, interactivity, and purchase attitude significantly positively affect the purchase intention of the silver-haired population (P < 0.01); functionality and expressiveness significantly positively affect perceived ease of use (P < 0.01); risk perception significantly negatively affects purchase attitude (P < 0.01). Through the construction and empirical study of the smart clothing consumer-consumption-need theoretical model, this paper hopes to stimulate the purchasing behavior of silver-haired population’s consumers towards smart clothing and enable them to enjoy the benefits brought by scientific and technological advancements, which to live out their golden years in comfort, also, promote the rapid development of the smart clothing industry.
Copyright © by EnPress Publisher. All rights reserved.