The article discusses the interrelationships of the loxodrome or rhumb line, isometric latitude, and the Mercator projection of the rotational ellipsoid. It is shown that by applying the isometric latitude, a very simple equation of the rhumb line on the ellipsoid is obtained. The consequence of this is that the isometric latitude can be defined using the generalized geodetic longitude and not only using the geodetic latitude, as was usual until now. Since the image of the rhumb line in the plane of the Mercator projection is a straight line, the isometric latitude can also be defined using this projection. Finally, a new definition of the normal aspect of the Mercator projection of the ellipsoid is given. It is a normal aspect cylindrical projection in which the images of the rhumb line on the ellipsoid are straight lines in the plane of projection that, together with the images of the meridians in the projection, form equal angles as the rhumb line forms with the meridians on the ellipsoid. The article provides essential knowledge to all those who are interested in the use of maps in navigation. It will be useful for teachers and students studying cartography and GIS, maritime, or applied mathematics. The author uses mathematical methods, especially differential geometry. The assumption is that the readers are no strangers to mathematical cartography.
The search for the development of nanostructured materials has led to the study of the properties of their precursors. For the production of nanofibers by the electrospinning process, it is necessary to determine the rheological parameters of the precursor solutions. Since these properties can be influenced by the processing variables and chemical composition of the polymer, this study aims to elucidate the effect of the addition of vinyl monomers in the formulation of nanofibers based on polyacrylonitrile and to determine the optimal parameters for the production of the precursor polymer solution. The effects of temperature and addition of vinyl monomers were evaluated by rheometry, from the analysis of the variation of the viscosity of the solutions, and by microscopy, the morphology of the nanofibers produced. It was observed that the increase in the temperature used to produce the solutions improves the fibers’ properties. Still, there is a relationship between the time of exposure of the polymeric solution to the temperature and the homogeneity of the fibers, which cannot exceed 45 min. The addition of vinyl monomers, to produce PAN-PVA co-polymeric fibers, increases the conductivity and reduces the viscosity of the solutions, resulting in more refined and homogeneous fibers.
High-quality implementation of cross-border mergers and acquisitions (cross-border M&As) is an important pathway for emerging-market multinational enterprises (EMNEs) to enhance their international competitiveness. However, in comparison to developed countries, cross-border M&As by EMNEs are often prohibited by the liability of origin caused by negative political coverage. How and why negative political coverage affect the completion of cross-border M&As by EMNEs? What are the contextual constraints that moderate the impact of negative political coverage on cross-border M&As completion? Based on the “liability of origin” theory, this paper addresses these questions using data from the Zephyr database on cross-border M&As by EMNEs in the United States from 2016 to June 2021 and employing a logit model for estimation. The research findings are as follows: (1) Negative political coverage leads to negative perceptions of emerging market countries by host country stakeholders, creating the liability of origin and stigmatizing the corporate nationality, thereby reducing the success rate of cross-border M&As by EMNEs. (2) Increasing geographical distance leads to information asymmetry, reinforcing the negative impact of negative political coverage on the completion of cross-border M&As by EMNEs. (3) Relevant mergers and acquisitions exacerbate the negative effect of negative political coverage on the success rate of cross-border M&As by EMNEs. (4) Being a publicly traded firm and having successful experience in cross-border M&As both intensify the negative impact of negative political coverage on the success rate of cross-border M&As by EMNEs.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion and low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use, and ability to be stored at room temperature for extended periods of time, Nevertheless, improving its low thermal conductivity is still a big, noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at a wight concentration of 3% when nano-Cu2O and nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O and nano-Al2O3 as they achieve the highest values of thermal conductivity and diffusivity at a weight concentration of 5.0 wt%.
Copyright © by EnPress Publisher. All rights reserved.