Lapaine M. New Definitions of the Isometric Latitude and the Mercator Projection. Revue Internationale de Géomatique. 2024; 33(1): 155-165. doi: 10.32604/rig.2024.052258
Snyder JP. Map projections: A working manual. Professional Paper. Geological Survey Professional Paper. 1987. doi: 10.3133/pp1395
Bugaevsky LM, Snyder JP. Map Projections: A Reference Manual. London, Bristol: Taylor & Francis; 1995.
Deakin RE. 3-D coordinate transformations. Surveying and land information systems. 1998; 58(4): 223−234. doi: 10.1017/S0373463315000181
Bian SF, Li HP. Mathematical Analysis in Cartography by Means of Computer Algebra System. Cartography - A Tool for Spatial Analysis. Published online August 17, 2012. doi: 10.5772/50159
Bermejo-Solera M, Otero J. Simple and highly accurate formulas for the computation of Transverse Mercator coordinates from longitude and isometric latitude. Journal of Geodesy. 2008; 83(1): 1-12. doi: 10.1007/s00190-008-0224-y
Li H, Bian S, Chen L. The direct calculating formulae for transformations between authalic latitude function and isometric latitude. Geomatics and Information Science of Wuhan University. 2011; 36(7): 843−846.
Thomas PD. Conformal projections in geodesy and cartography (United States. Coast and Geodetic Survey. Special publication). National Technical Information Service; 1977.
Kawase K. Concise derivation of extensive coordinate conversion formulae in the Gauss-Krüger projection. Bulletin of the Geospatial information authority of Japan. 2013; 60: 1−6.
Abee M. The Spread of the Mercator Projection in Western European and United States Cartography. The International Journal for Geographic Information and Geovisualization. 2021; 56(2): 151-165. doi: 10.3138/cart-2019-0024
Lapaine M, Frančula N. Web Mercator Projection – One of Cylindrical Projections of an Ellipsoid to a Plane. Kartografija i geoinformacije. 2021; 20(35): 30-47. doi: 10.32909/kg.20.35.2
Pápay G. Mercator’s geometric method in the construction of his projection of 1569 (German). KN - Journal of Cartography and Geographic Information. 2022; 72(4): 261-267. doi: 10.1007/s42489-022-00115-5
Kerkovits K. Secant Cylinders Are Evil—A Case Study on the Standard Lines of the Universal Transverse Mercator and Universal Polar Stereographic Projections. ISPRS International Journal of Geo-Information. 2024; 13(2): 56. doi: 10.3390/ijgi13020056
Lenart AS. Orthodromes and Loxodromes in Marine Navigation. Journal of Navigation. 2016; 70(2): 432-439. doi: 10.1017/s0373463316000552
Gao M, Shi GY. Ship-handling behavior pattern recognition using AIS sub-trajectory clustering analysis based on the T-SNE and spectral clustering algorithms. Ocean Engineering. 2020; 205: 106919. doi: 10.1016/j.oceaneng.2020.106919
Nicolai R. The map projection of portolan charts. Nieuw archief voor wiskunde. 2021; 5(1): 33−41.
Jiao C, Wan X, Li H, et al. Dynamic Projection Method of Electronic Navigational Charts for Polar Navigation. Journal of Marine Science and Engineering. 2024; 12(4): 577. doi: 10.3390/jmse12040577
Alexander J. Loxodromes: A Rhumb Way to Go. Mathematics Magazine. 2004; 77(5): 349-356. doi: 10.1080/0025570x.2004.11953279
Kos S, Filjar R, Hess M. Differential Equation of the Loxodrome on a Rotational Surface. Available online: https://www.ion.org/publications/abstract.cfm?articleID=8379 (accessed on 9 March 2024).
Kos S, Vranić D, Zec D. Differential Equation of a Loxodrome on a Sphere. Journal of Navigation. 1999; 52(3): 418-420. doi: 10.1017/s0373463399008395
Elhashash A. Existence, Uniqueness and Angle Computation for the Loxodrome on an Ellipsoid of Revolution. Journal of Geometry and Symmetry in Physics; 2012. doi: 10.7546/jgsp-13-2009-75-88
Petrović M. Differential Equation of a Loxodrome on the Spheroid. Naše more. 2007; 54(3-4): 87-89.
Petrović M. Orthodrome-Loxodrome Correlation by the Middle Latitude Rule. Journal of Navigation. 2013; 67(3): 539-543. doi: 10.1017/s037346331300074x
Weintrit A, Kopcz P. A Novel Approach to Loxodrome (Rhumb Line), Orthodrome (Great Circle) and Geodesic Line in ECDIS and Navigation in General. In: Methods and Algorithms in Navigation. CRC Press; 2014.
Babaarslan M, Yayli Y. Differential Equation of the Loxodrome on a Helicoidal Surface. Journal of Navigation. 2015; 68(5): 962-970. doi: 10.1017/s0373463315000181
Kovalchuk V, Mladenov IM. λ-Spheres as a New Reference Model for Geoid: Explicit Solutions of the Direct and Inverse Problems for Loxodromes (Rhumb Lines). Mathematics. 2022; 10(18): 3356. doi: 10.3390/math10183356
Lambrinos N, Repanidou I, Intzidou G. A Didactical Approach of Rhumb Line vs. Great Circle in Web Mercator Projection for 6th Grade Pupils. Didactic Strategies and Resources for Innovative Geography Teaching. Published online June 10, 2022: 168-202. doi: 10.4018/978-1-7998-9598-5.ch008
Tseng WK, Earle MA, Guo JL. Direct and Inverse Solutions with Geodetic Latitude in Terms of Longitude for Rhumb Line Sailing. Journal of Navigation. 2012; 65(3): 549-559. doi: 10.1017/s0373463312000148
Viličić M, Lapaine M. Loxodrome and Isometric Latitude. Cartography and Geoinformation. 2024; 23(41).
Lapaine M. Mappings in the theory of map projections (Croatian) [PhD thesis]. University of Zagreb, Faculty of Geodesy; 1996.
Heck B. Calculation methods and evaluation models for land surveying (German). Herbert Wichmann Verlag, Karlsruhe; 1987.
Lapaine M. Isometric latitude and rhumb line (Croatian). Geodetski list. 1993; 1: 5−14.