Carbon-based hollow structured nanomaterials have become one of the hot areas for research and development of hollow structured nanomaterials due to their unique structure, excellent physicochemical properties and promising applications. The design and synthesis of novel carbon-based hollow structured nanomaterials are of great scientific significance and wide application value. The recent research on the synthesis, structure and functionalization of carbon-based hollow structured nanomaterials and their related applications are reviewed. The basic synthetic strategies of carbon-based hollow structure nanomaterials are briefly introduced, and the structural design, material functionalization and main applications of carbon-based hollow structure nanomaterials are described in detail. Finally, the current challenges and opportunities in the synthesis and application of carbon-based hollow structured nanomaterials are discussed.
One of the biggest environmental problems that has affected the planet is global warming, due to high concentrations of carbon (CO2), which has led to crops such as coffee being affected by climate change caused by greenhouse gases (GHG), especially by the increase in the incidence of pests and diseases. However, carbon sequestration contributes to the mitigation of GHG emissions. The objective of this work was to evaluate the carbon stored in above and below ground biomass in four six-year-old castle coffee production systems. In a trial established under a Randomized Complete Block Design (RCBD) with the treatments Coffee at free exposure (T1), Coffee-Lemon (T2), Coffee-Guamo (T3) and Coffee-Carbonero (T4), at three altitudes: below 1,550 masl, between 1,550 and 2,000 masl and above 2,000 masl. Data were collected corresponding to the stem diameters of coffee seedlings and shade trees with which allometric equations were applied to obtain the carbon variables in the aerial biomass and root and the carbon variables in leaf litter and soil obtained from their dry matter. Highly significant differences were obtained in the four treatments evaluated, with T4 being the one that obtained the highest carbon concentration both in soil biomass with 100.14 t ha-1 and in aerial biomass with 190.42 t ha-1.
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. Cisplatin-loaded nanoparticle formulations were optimized utilizing response surface methods and the central composite rotating design model. This study employed a central composite rotatable design with a three-factored factorial design with three tiers. Three independent variables namely drug polymer ratio, aqueous organic phase ration, and stabilizer concentration were used to examine the particle size, entrapment efficiency, and drug loading of cisplatin PLGA nanoparticles as responses. The results revealed that this response surface approach might be able to be used to find the best formulation for the cisplatin PLGA nanoparticles. A polymer ratio of 1:8.27, organic phase ratio of 1:6, and stabilizer concentration of 0.15 were found to be optimum for cisplatin PLGA nanoparticles. Nanoparticles made under the optimal conditions found yielded a 112 nm particle size and a 95.4 percent entrapment efficiency, as well as a drug loading of 9 percent. The cisplatin PLGA nanoparticles tailored for scanning electon microscopy displayed a spherical form. A series of in vitro tests showed that the nanoparticle delivered cisplatin progressively over time. According to this work, the Response Surface Methodology (RSM) employing the central composite rotatable design may be successfully used to simulate cisplatin-PLGA nanoparticles.
The detection of urban expansion through digital processing of satellite images provides valuable information for understanding the dynamics of land use change and its spatial relationship with environmental factors. In order to apply or generate effective land-use planning policies, it is essential to have a historical record of the regional distribution of human settlements, an element that is practically non-existent in our country. For this reason, this text aims to determine the urban growth rate during the period 2000–2014 in the state of Hidalgo, Mexico, and to identify potential expansion zones from Landsat images. Six Landsat scenes were used for the spatial analysis of the state urban coverage and their relationship with the road influence area was evaluated. Two maps were obtained as cartographic products: one of urban coverage distribution and another of the municipalities with the greatest expansion, whose areas are located in the Valle del Mezquital region. However, Mineral de la Reforma, Tetepango, Tizayuca and Pachuca de Soto stand out for their growth rates during the study period: 183.44%, 102%, 94% and 68.5%, respectively. In total, the state urban area in-creased 72.3 km2 from 2000 to 2014 with an average growth rate of 1.8% per year. Such growth was associated with the areas of influence of important road infrastructure, such as the Libramiento Arco Norte in Hidalgo. Therefore, the Mezquital Valley and the Mexico Basin are considered as potential regions for urban expansion in the state.
The study examined the socio-demographic factors affecting access to and utilization of social welfare services in Yenagoa Local Government Area of Bayelsa State, Nigeria. Quantitative and qualitative approaches were adopted to select 570 respondents from the study area. Probability and non-probability sampling techniques were adopted in the selection of communities, and respondents. The quantitative data were analyzed using frequency distribution tables and percentages, while chi-square statistic was used to determine the relationship between socio-demographic variables and access to and utilization of social welfare services. The qualitative data were analyzed in themes as a complement to the quantitative data. This study reveals that although all the respondents reported knowing available social welfare services, 44.3% reported not having access to existing social services due to factors connected to serendipity variables, such as terrain condition, ethnicity and knowing someone in government. Therefore, the study recommends that the government and other stakeholders should push for the massive delivery of much-needed social welfare services to address the issue of welfare service deficit across the nation, irrespective of the ethnic group and whether the community is connected to the government of the day or not, primarily in rural areas.
Alfalfa is considered the most used forage crop in the world, its main use is for cattle feeding, due to its high nutritional value, specifically in protein and digestible fiber. Currently, the trend in agriculture is to reduce the application of chemicals and among them are fertilizers that pollute soil and water, so the adoption of new technologies and other not so new is becoming a good habit among farmers. Nanotechnology in the plant system allows the development of new fertilizers to improve agricultural productivity and the release of mineral nutrients in nanoforms, which has a wide variety of benefits, including the timing and direct release of nutrients, as well as synchronizing or specifying the environmental response. Biofertilizers are important components of integrated nutrient management and play a key role in soil productivity and sustainability. While protecting the environment, they are a cost-effective, environmentally friendly and renewable source of plant nutrients to supplement chemical fertilizers in the sustainable agricultural system. Nanotechnology and biofertilization allow in a practical way the reduction in the application of chemicals, contributing to the sustainability of agriculture, so this work aims to review the relevant results on biofertilization, the use of nanotechnology and the evaluation of the nutritional composition of alfalfa when grown with the application of biofertilizers.
Copyright © by EnPress Publisher. All rights reserved.