Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
In wealthy nations, biofuel usage has grown in importance as a means of addressing climate change concerns, ensuring energy security, and promoting agricultural development. Because they understand the potential advantages of biofuel for rural development and job creation, governments have created policies and legislation to encourage the production of biofuel. However, the province of Limpopo hasn’t fully taken advantage of the potential to use biofuel production as a vehicle for job development, despite a higher demand for the fuel. There is currently a lack of understanding of the role of biofuel in promoting local development in developing regions. For this reason, this study made use of semi-structured interviews to explore how biofuel production can be used as an instrument for Local Economic Development (LED) in the Limpopo province of South Africa. The research investigated the determinants of empowerment that could impact the commercial feasibility of biofuel production in the province. It also identified the need for human resource development to get workers ready for jobs in Limpopo’s biofuel sector. The results showed that, provided certain conditions were met, the production of biofuel in Limpopo may be a useful instrument for creating local jobs. By highlighting the potential for job creation and the importance of human resource development, this research aims to facilitate evidence-based decision-making that can harness biofuel production for sustainable rural development in the region. The value of this study lies in its contribution to the understanding of biofuel’s role in LED, offering actionable insights for policymakers and stakeholders in Limpopo.
This study investigates the complex interrelationship between democracy, corruption, and economic growth in Greece over the period 2012–2022. Using data from Transparency International, the Economist Intelligence Unit, and Eurostat, appropriate methods such as Ordinary Least Squares (OLS) regression, Generalized Method of Moments(GMM) estimation, and Granger causality tests were applied. The findings reveal that increased democracy correlates positively with reported corruption, likely reflecting heightened transparency and exposure. Conversely, economic growth shows a negative association with corruption, underlining the role of structural reforms and institutional improvements. These insights emphasize the need for strengthening democratic institutions, promoting digital governance, and implementing targeted economic reforms to reduce corruption and foster sustainable development.
The exploitation of timber has had a profound impact on tropical forest areas and their structures. This study assessed the effect of selective logging on natural regeneration and soil characteristics in post-loading bay sites at the Pra-Anum forest reserve in Ghana, West Africa. The results showed no difference in the number of species enumerated in the loading bays and the undisturbed area. More trees were observed in the RAT and RNT plots than in the undisturbed area. Relative to the RAT plot, species on the RNT and the undisturbed area were less diverse and less evenly distributed. Mean tree height, diameter, and basal area were higher in the RAT and RNT plots than in the undisturbed plots. Soil bulk density was lower in the RAT and undisturbed plot than in the RAT plot and increased with increased depth. Soil organic matter was 44% and 27% more in the undisturbed and RAT plots, respectively, than in the RNT plot and accounted for 84.75%, 83.97% and 45.33% of variations in soil bulk density, pH, and CEC. The study provides insight into the need to rehabilitate highly disturbed areas in forests, particularly the addition of topsoil on loading bays, skid trails, roads, and gaps after logging to improve the productivity of the forest soils.
Research networks organized around a particular topic are built as knowledge is produced and socialized. These are parts of a seminal or initial production, to which new authors and subtopics are added until research and knowledge networks are formed around a particular area. The purpose of the research was to find this type of relationship or network between authors, institutions, and countries that have contributed to the issue of the circular economy and specifically its relationship with sustainability. This allows those interested in the said object of study to know the research advances of the network, enter their research lines, or create new networks according to their interests or needs. The study used a bibliometric-type descriptive quantitative approach using the Scopus scientific database, the R Studio data analytics application, and the Bibliometrix library. The results were found to determine a relationship building from 2006, which makes it an emerging topic. However, the growth it has achieved in recent years of more than 31% shows a strong interest in the subject. Of the subtopics that have been addressed, sustainability, recycling, solid waste, wastewater, and renewable energy. Similarly, sectors such as construction, the automotive industry, tourism, cities, the agricultural sector, the chemical industry, and the implementation of technologies 4.0 and 5.0 in their processes stood out. The most prominent country in the scientific approach to this area is Italy. The most prominent author for his citations is Molina-Moreno, the source of knowledge that stands out for his contributions is the University of Granada and different networks have been built around their knowledge.
Copyright © by EnPress Publisher. All rights reserved.