The study examines the relationship between EPS and the gearing ratios and return on equity (ROE) ratio of 9 public listed firms on the Malaysian Stock Exchange from 2014 to 2022 financial years. The firms are selected at random. From this study it was established that there is a negative relation between EPS and gearing and a positive relation between EPS and ROE. Companies that want to attract more investors need to keep their gearing ratio low and increase the return on equity ratio high. To obtain the benefits of gearing or external funding, there need to be a balance between equity and debts. There is no one optimal balance between debt and equity. This balance is difference for each company and the sector they operate in. It is important for managers of companies to find the optimal balance between debt and equity, unique to their company.
Metal iodide materials as novel components of thermal biological and medical systems at the interface between heat transfer techniques and therapeutic systems. Due to their outstanding heat transfer coefficients, biocompatibility, and thermally activated sensitivity, metal iodides like silver iodide (AgI), copper iodide (CuI), and cesium iodide (CsI) are considered to be useful in improving the performance of medical instruments, thermal treatment processes, and diagnostics. They are examined for their prospective applications in controlling thermal activity, local heating therapy, and smart temperature-sensitive drug carrier systems. In particular, their application in hyperthermia therapy for cancer treatment, infrared thermal imaging for diagnosis, and nano-based drug carriers points to a place for them in precision medicine. But issues of stability of materials used, biocompatibility, and control of heat—an essential factor that would give the tools the maximum clinical value—remain a challenge. The present mini-review outlines the emerging area of metal iodides and their applications in medical technologies, with a special focus on the pivotal role of these materials in enhancing non-invasive, efficient, and personalized medicine. Over time, metal iodide-based systems scouted a new era of thermal therapies and diagnostic instrumentation along with biomedical science as a whole.
The prospects of digital infrastructure in promoting rural economic growth and development are by and large immense. The paper found that rural development is considerably important for economic development and for achievement of sustainable livelihoods that increases people’s ability to achieve good health and wellbeing that enable the achievement of sustainable development. The paper found that digital imbalance and digital illiteracy in the rural areas hinder implementation of digital infrastructure to lead to rural economic growth. Digital infrastructure is the source of economic opportunities that enables local people in the rural areas to be more creative in achieving development success. It enables them to have a unique sense of place and fashioning of vibrant economic and financial opportunities that ensure the achievement of sustainable rural economic development. However, the paper found that the application of digital infrastructure to South Africa’s rural areas in the bid to promote rural economic growth has been hindered by factors like the digital divide, financial constraints, digital illiteracy and the failure to own a smart phone. These factors hinder digital infrastructure from leading to sustainable rural economic development and growth. The paper used secondary data gathered from existing literature. The use of qualitative research methodology and document and content analysis techniques became vital in the process of collecting and analyzing collected data.
New telechelic polymers functionalized with terminal ethyl xanthate or vinyl groups were synthesized via cationic ring-opening polymerization (CROP). The polymerization of 2-ethyl-2-oxazoline (Etoxa) and 2-methoxycarbonylethyl-2-oxazoline (Esteroxa) was initiated by 1,4-trans-dibromobutene in acetonitrile at 78 ℃, with termination using either potassium ethyl xanthate or 4-vinylbenzyl-piperazine. Structural characterization by 1H and 13C NMR and FTIR spectroscopy confirmed the telechelic architecture. 1H NMR analysis revealed degrees of polymerization (DP) of 24–29 for ethyl xanthate-terminated polymers and 22–23 for vinyl-terminated polymers, consistent with theoretical values. The molar compositions of Etoxa and Esteroxa in all telechelic polymers matched the initial monomer feed ratios. End-group functionalization efficiency was quantified as follows: Ethyl xanthate-terminated polymers: 64%–82%, and vinyl-terminated polymers: 69% and 98% (for respective batches).
This study aims to investigate the enhancement in electrical efficiency of a polycrystalline photovoltaic (PV) module. The performance of a PV module primarily depends upon environmental factors like temperature, irradiance, etc. Mainly, the PV module performance depends upon the panel temperature. The performance of the PV module has an inverse relationship with temperature. The open circuit voltage of a module decreases with the increase in temperature, which consequently leads to the reduction in maximum power, efficiency, and fill factor. This study investigates the increase in the efficiency of the PV module by lowering the panel temperature with the help of water channel cooling and water-channel accompanied with forced convection. The two arrangements, namely, multi-inlet outlet and serpentine, are used to decrease the temperature of the polycrystalline PV module. Copper tubes in the form of the above arrangements are employed at the back surface of the panel. The results demonstrate that the combined technique is more efficient than the simple water-channel cooling technique owing to multi-heat dissipation and effective heat transfer, and it is concluded that the multi-inlet outlet cooling technique is more efficient than the serpentine cooling technique, which is attributed to uniform cooling over the surface and lesser pressure losses.
Copyright © by EnPress Publisher. All rights reserved.