Sport has become a fundamental socio-economic area. Currently, technological progress plays one of the most important roles in the development of sport. In the twenty-first century, innovation, and technology are significantly shaping the world of law enforcement and sports policing, and huge changes are taking place that need to be responded to. The development, spread and completion of info communication, information technology, digital technologies, and digitalization itself at an ever-faster pace than ever before are fundamentally changing all areas of the economy and society. Today there is no question that digitalization is the engine of the economy, which has an impact in all sectors, including sports and law enforcement. In the study, the authors examine the possibility of technical development in the field of sports safety. Among other things, drones, facial recognition systems and predictive analytics will be examined. The methodology used is mainly based on the analysis and examination of previous methods. The authors propose to adapt the innovative tools used at previous sports and mass events in the field of sports safety.
The semiclassical boron–boron interatomic pair potential is constructed in an integral form allowing its converting into the analytical one. It is an ab initio B–B potential free of any semiempirical adjusting parameters, which would serve as an effective tool for the theoretical characterization of all-boron and boron-rich nanomaterials.
This study focuses on the use of the Soil and Water Assessment Tool (SWAT) model for water budgeting and resource planning in Oued Cherraa basin. The combination of hydrological models such as SWAT with reliable meteorological data makes it possible to simulate water availability and manage water resources. In this study, the SWAT model was employed to estimate hydrological parameters in the Oued Cherra basin, utilizing meteorological data (2012–2020) sourced from the Moulouya Hydraulic Basin Agency (ABHM). The hydrology of the basin is therefore represented by point data from the Tazarhine hydrological station for the 2009–2020 period. In order to optimize the accuracy of a specific model, namely SWAT-CUP, a calibration and validation process was carried out on the aforementioned model using observed flow data. The SUFI-2 algorithm was utilized in this process, with the aim of enhancing its precision. The performance of the model was then evaluated using statistical parameters, with particular attention being given to Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The NSE values for the study were 0.58 for calibration and 0.60 for validation, while the corresponding R2 values were 0.66 and 0.63. The study examined 16 hydrological parameters for Oued Cherra, determining that evapotranspiration accounted for 89% of the annual rainfall, while surface runoff constituted only 6%. It also showed that groundwater recharge was pretty much negligible. This emphasized how important it is to manage water resources effectively. The calibrated SWAT model replicated flow patterns pretty well, which gave us some valuable insights into the water balance and availability. The study’s primary conclusions were that surface water is limited and that shallow aquifers are a really important source of water storage, especially for irrigation during droughts.
This study investigated the students’ perceptions of a self-paced fitness program that is integrated with SitFit, a fitness tracker that measures body inclination during sit-up exercises, and their acceptance of digital innovation in physical education. The data was gathered from a survey of 1001 Thai undergraduates. Results revealed that attitudes toward using the technology and the perceived ease of use were important predictors of behavioral intention to use the sit-up fitness tracker. consistent with previous TAM studies. Subsequently, SitFit was developed based on exercise principles and expert advice to enable users to exercise more effectively while reducing injury risk.
In today’s fast-moving, disrupted business environment, supply chain risk management is crucial. More critically, Industry 4.0 has conferred competitive advantages on supply chains through the integration of digital technologies into manufacturing and logistics, but it also implies several challenges and opportunities regarding the management of these risks. This paper looks at some ways emerging technologies, especially Artificial Intelligence (AI), help address pressing concerns about the management of risk and sustainability in logistics and supply chains. The study, using a systemic literature review (SLR) backed by a mapping study based on the Scopus database, reveals the main themes and gaps of prior studies. The findings indicate that AI can substantially enhance resilience through early risk identification, optimizing operations, enriching decision-making, and ensuring transparency throughout the value chain. The key message from the study is to bring out what technology contributes to rendering supply chains resilient against today’s uncertainties.
Efficient access to tourist spots is necessary for enhancing the overall travel experience, especially in urban environments. This study investigates the accessibility of key tourist spots in Budapest through different transportation modes (e.g., walking, cycling, and public transport) across various time intervals. Using spatial-temporal travel time maps and detailed statistical analysis, the research highlighted significant differences in how these modes connect tourists to their attractions. Cycling stands out as the most efficient transportation option, providing rapid access to a wide range of tourist spots, while public transport ranks second. However, the study also reveals disparities in accessibility, with central areas being well-served, while outer ones, especially in the northwest, remain less accessible. These findings highlight the need for targeted transportation improvements to ensure that all areas of the city are equally reachable. The results offer valuable insights for urban planners and policymakers aiming to enhance tourism infrastructure and improve the visitor experience in Budapest.