Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
The contradiction between the ability of forestry that provides high-quality and abundant forestry products and good ecological services, and the demand for high-quality and diversified forestry products and service in order to meet the people’s rapid growing, has become the main contradiction faced by forestry development in new era. Since the area of forest resources in China is restricted by the expansion space, expanding the effective supply of forestry must mainly depends on the improvement of the quality and structure of forestry resources. Therefore, the focus of promoting forestry development is to comprehensively improve the level of forest management in the new era. Based on the analysis of the causes for the low level of forest management, it is proposed that forestry development in the new era should focus on the positively stimulating and strengthening the human capital development, etc., which come from the current following aspects: innovating forest management theory and model, clarifying the relationship between government and market.
Puppetry is one of the traditional folk art forms with a long history in China.Puppetry is one of the traditional folk art forms with a long history in China. After it was transmitted to the Gaozhou Prefecture of Guangdong by the Fujian Zhangzhou Puppet Show during the Wanli period of the Ming Dynasty, it gradually took root in the local culture of Guangdong, and the Gaozhou Puppet Theatre was born as a result. Under the radiant influence of Cantonese Opera, the number one theatre in Lingnan, in the western part of Guangdong, the Gaozhou Puppet Theatre has been passed down through the generations, and has used the Cantonese Opera cantata, an element of Cantonese Opera that is the essence of the art, in its unique puppetry accent. Nowadays, when many "non-heritage" cultures are facing difficulties in inheritance and development, it is especially crucial for the puppet theatre of Gaozhou to be able to use the elements of Cantonese Opera's singing in the new era, so as to make Gaozhou Puppet Theatre a new life and make the public appreciate the art again by incorporating the elements of Cantonese Opera's singing.
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. Cisplatin-loaded nanoparticle formulations were optimized utilizing response surface methods and the central composite rotating design model. This study employed a central composite rotatable design with a three-factored factorial design with three tiers. Three independent variables namely drug polymer ratio, aqueous organic phase ration, and stabilizer concentration were used to examine the particle size, entrapment efficiency, and drug loading of cisplatin PLGA nanoparticles as responses. The results revealed that this response surface approach might be able to be used to find the best formulation for the cisplatin PLGA nanoparticles. A polymer ratio of 1:8.27, organic phase ratio of 1:6, and stabilizer concentration of 0.15 were found to be optimum for cisplatin PLGA nanoparticles. Nanoparticles made under the optimal conditions found yielded a 112 nm particle size and a 95.4 percent entrapment efficiency, as well as a drug loading of 9 percent. The cisplatin PLGA nanoparticles tailored for scanning electon microscopy displayed a spherical form. A series of in vitro tests showed that the nanoparticle delivered cisplatin progressively over time. According to this work, the Response Surface Methodology (RSM) employing the central composite rotatable design may be successfully used to simulate cisplatin-PLGA nanoparticles.
The design of effective flood risk mitigation strategies and their subsequent implementation is crucial for sustainable development in mountain areas. The assessment of the dynamic evolution of flood risk is the pillar of any subsequent planning process that is targeted at a reduction of the expected adverse consequences of the hazard impact. This study focuses on riverbed cities, aiming to analyze flood occurrences and their influencing factors. Through an extensive literature review, five key criteria commonly associated with flood events were identified: slope height, distance from rivers, topographic index, and runoff height. Utilizing the network analysis process within Super Decision software, these factors were weighted, and a final flood risk map was generated using the simple weighted sum method. 75% of the data was used for training, and 25% of it was used for testing. Additionally, vegetation changes were assessed using Landsat imagery from 2000 and 2022 and the normalized difference vegetation index (NDVI). The focus of this research is Qirokarzin city as a case study of riverbed cities, situated in Fars province, with Qir city serving as its central hub. Key rivers in Qirokarzin city include the Qara Aghaj River, traversing the plain from north to south; the primary Mubarak Abad River, originating from the east; and the Dutulghaz River, which enters the eastern part of the plain from the southwest of Qir, contributing to plain nourishment during flood events. The innovation of this paper is that along with the objective to produce a reliable delineation of hazard zones, a functional distinction between the loading and the response system (LS and RS, respectively) is made. Results indicate the topographic index as the most influential criterion, delineating Qirokarzin city into five flood risk zones: very low, low, moderate, high, and very high. Notably, a substantial portion of Qirokarzin city (1849.8 square kilometers, 8.54% of the area) falls within high- to very-high flood risk zones. Weighting analysis reveals that the topographic humidity index and runoff height are the most influential criteria, with weights of 0.27 and 0.229, respectively. Conversely, the height criterion carries the least weight at 0.122. Notably, 46.7% of the study area exhibits high flood intensity, potentially attributed to variations in elevation and runoff height. Flood potential findings show that the middle class covers 32.3%, indicating moderate flood risk due to changes in elevation and runoff height. The low-level risk is observed sporadically from the east to the west of the study area, comprising 12.4%. Analysis of vegetation changes revealed a significant decline in forest and pasture cover despite agricultural and horticultural development, exacerbating flood susceptibility.
Improving educational outcomes in subjects such as English and mathematics remains a significant challenge for educators and policymakers. Strategic Human Resource Management (SHRM), which aligns human resource practices with organizational goals, has proven effective in business sectors but is less explored in educational contexts, especially from students’ perspectives. Existing studies often focus on teacher development, overlooking direct impacts on student performance. This research addresses the gap by examining how SHRM influences students’ performance in English and mathematics, incorporating student feedback to assess SHRM’s effectiveness. In the quantitative study, 200 students were analyzed to explore the relationship between SHRM practices and academic outcomes. The findings indicate that SHRM significantly affects student performance, with high predictive relevance and explanatory power in both subjects. The results suggest that strategic HR practices, such as professional development, performance management, and resource allocation, are critical to academic success. These insights provide valuable implications for educators and policymakers, highlighting the importance of integrating strategic HR management into educational frameworks to enhance curriculum design and resource distribution. The study demonstrates the broad applicability of SHRM across different academic disciplines, suggesting a need for comprehensive HR strategies that focus on both teacher and student performance. Future research should explore how SHRM influences educational outcomes and identify contextual factors that moderate its impact, enhancing effective HR practices in diverse academic settings.
Copyright © by EnPress Publisher. All rights reserved.