This article explores the properties of Fibonacci sequences and their widespread applications.
Effective harvesting strategies are crucial for maximizing annual catch and ensuring the sustainability of lobster (Homarus americanus) farming. This paper presents a nonlinear objective programming model to optimize harvesting intensity based on lobster life cycle dynamics and harvesting characteristics. We model the population dynamics of 1-4 year-old lobsters using differential equations to account for natural mortality, spawning, and harvesting effects. Solving the model with LINGO 12.0, we determine that the optimal harvesting intensity coefficient is 17.36, which maximizes annual catch to 3.88 × 10¹⁰ grams. Results indicate that maintaining harvesting intensity around this optimal value balances economic benefits and population stability, ensuring sustainable farm operations.
One crucial metric for estimating a reservoirs and dam’s lifespan is sedimentation. It is dependent upon sediment output, which in turn is dependent upon soil erosion. The study area, the Aguat Wuha Dam, was located in Simada woreda, of northwestern parts of Ethiopia. And the study's goal was to use Arc GIS and RUSLE adjusted to Ethiopian conditions to assess potential soil erosion and sediment output from the watershed and identify hotspot locations for appropriate planning for erosion and sedimentation problem management techniques to make the outputs of the dam project more productive and effective for the proposed and suggested purpose of the dam. To predict the geographical patterns of soil erosion in the watershed, the Geographic Information System (GIS) was combined with the revised universal soil loss equation (RUSLE). A soil erosion map was produced using ArcGIS by utilizing all of the model's parameters, including Erosivity, erodibility, steepness, land use, land cover, and supportive practice factors. The watershed's yearly soil loss varies from 0 to 413.86 tons/ha. In order to determine the erosion hotspot area, the average annual soil loss value was discovered to be 9.24 tons/ha/year and was categorized into six erosion severity classes: low, moderate, high, very high, severe, and very severe. These findings indicated that 162.57 ha and 699.17 ha of the watershed were considered to be extremely and severely vulnerable to soil erosion, respectively. It was discovered that the anticipated sediment yield supplied to the outlet varied from 0 to 104.94 tons/ha/year. By standing from the implications of the assessments of the geological, geotechnical, topographical, and socioenvironmental considerations Watershed management is the most effective way to reduce the amount of sediment produced and the amount that enters the reservoir among the several reservoir sedimentation control options that are available.
Inflammation of the lungs, called pneumonia, is a disease characterized by inflammation of the air sacs that interfere with the exchange of oxygen and carbon dioxide. It is caused by a variety of infectious organisms, including viruses, bacteria, fungus, and parasites. Pneumonia is more common in people who have pre-existing lung diseases or compromised immune systems, and it primarily affects small children and the elderly. Diagnosis of pneumonia can be difficult, especially when relying on medical imaging, because symptoms may not be immediately apparent. Convolutional neural networks (CNNs) have recently shown potential in medical imaging applications. A CNN-based deep learning model is being built as part of ongoing research to aid in the detection of pneumonia using chest X-ray images. The dataset used for training and evaluation includes images of people with normal lung conditions as well as photos of people with pneumonia. Various preprocessing procedures, such as data augmentation, normalization, and scaling, were used to improve the accuracy of pneumonia diagnosis and extract significant features. In this study, a framework for deep learning with four pre-trained CNN models—InceptionNet, ResNet, VGG16, and DenseNet—was used. To take use of its key advantages, transfer learning utilizing DenseNet was used. During training, the loss function was minimized using the Adam optimizer. The suggested approach seeks to improve early diagnosis and enable fast intervention for pneumonia cases by leveraging the advantages of several CNN models. The outcomes show that CNN-based deep learning models may successfully diagnose pneumonia in chest X-ray pictures.
Osteoid osteoma (OO) is a benign osteoblastic tumor of bone that usually affects children and young adults. They are usually located on metaphysis or diaphysis of long bones. Their clinical, anamnesis and radiological findings are typical. Intra-articular OO however has different properties due to its placement within joints. Sclerosis around the lesion is either minimal or non-existent, but synovitis can be seen in the joint. For this reason, they are usually diagnosed later. In this case series, we diagnosed three cases (2 ankles and 1 hip joint) that were diagnosed with osteochondral lesions previously and had in chronic pain which did not respond to several treatments in different centers with intra-articular OO and treated them with radiofrequency ablation using computerized tomography. Knowing the radiological properties of intra-articular OO and being aware of this condition during differential diagnosis of joint pain cases will be useful to diagnose this rare pathology.
Retinal disorders, such as diabetic retinopathy, glaucoma, macular edema, and vein occlusions, are significant contributors to global vision impairment. These conditions frequently remain symptomless until patients suffer severe vision deterioration, underscoring the critical importance of early diagnosis. Fundus images serve as a valuable resource for identifying the initial indicators of these ailments, particularly by examining various characteristics of retinal blood vessels, such as their length, width, tortuosity, and branching patterns. Traditionally, healthcare practitioners often rely on manual retinal vessel segmentation, a process that is both time-consuming and intricate, demanding specialized expertise. However, this approach poses a notable challenge since its precision and consistency heavily rely on the availability of highly skilled professionals. To surmount these challenges, there is an urgent demand for an automatic and efficient method for retinal vessel segmentation and classification employing computer vision techniques, which form the foundation of biomedical imaging. Numerous researchers have put forth techniques for blood vessel segmentation, broadly categorized into machine learning, filtering-based, and model-based methods. Machine learning methods categorize pixels as either vessels or non-vessels, employing classifiers trained on hand-annotated images. Subsequently, these techniques extract features using 7D feature vectors and apply neural network classification. Additional post-processing steps are used to bridge gaps and eliminate isolated pixels. On the other hand, filtering-based approaches employ morphological operators within morphological image processing, capitalizing on predefined shapes to filter out objects from the background. However, this technique often treats larger blood vessels as cohesive structures. Model-based methods leverage vessel models to identify retinal blood vessels, but they are sensitive to parameter selection, necessitating careful choices to simultaneously detect thin and large vessels effectively. Our proposed research endeavors to conduct a thorough and empirical evaluation of the effectiveness of automated segmentation and classification techniques for identifying eye-related diseases, particularly diabetic retinopathy and glaucoma. This evaluation will involve various retinal image datasets, including DRIVE, REVIEW, STARE, HRF, and DRION. The methodologies under consideration encompass machine learning, filtering-based, and model-based approaches, with performance assessment based on a range of metrics, including true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), negative predictive value (NPV), false discovery rate (FDR), Matthews's correlation coefficient (MCC), and accuracy (ACC). The primary objective of this research is to scrutinize, assess, and compare the design and performance of different segmentation and classification techniques, encompassing both supervised and unsupervised learning methods. To attain this objective, we will refine existing techniques and develop new ones, ensuring a more streamlined and computationally efficient approach.
Copyright © by EnPress Publisher. All rights reserved.