The idea of a smart city has evolved in recent years from limiting the city’s physical growth to a comprehensive idea that includes physical, social, information, and knowledge infrastructure. As of right now, many studies indicate the potential advantages of smart cities in the fields of education, transportation, and entertainment to achieve more sustainability, efficiency, optimization, collaboration, and creativity. So, it is necessary to survey some technical knowledge and technology to establish the smart city and digitize its services. Traffic and transportation management, together with other subsystems, is one of the key components of creating a smart city. We specify this research by exploring digital twin (DT) technologies and 3D model information in the context of traffic management as well as the need to acquire them in the modern world. Despite the abundance of research in this field, the majority of them concentrate on the technical aspects of its design in diverse sectors. More details are required on the application of DTs in the creation of intelligent transportation systems. Results from the literature indicate that implementing the Internet of Things (IoT) to the scope of traffic addresses the traffic management issues in densely populated cities and somewhat affects the air pollution reduction caused by transportation systems. Leading countries are moving towards integrated systems and platforms using Building Information Modelling (BIM), IoT, and Spatial Data Infrastructure (SDI) to make cities smarter. There has been limited research on the application of digital twin technology in traffic control. One reason for this could be the complexity of the traffic system, which involves multiple variables and interactions between different components. Developing an accurate digital twin model for traffic control would require a significant amount of data collection and analysis, as well as advanced modeling techniques to account for the dynamic nature of traffic flow. We explore the requirements for the implementation of the digital twin in the traffic control industry and a proper architecture based on 6 main layers is investigated for the deployment of this system. In addition, an emphasis on the particular function of DT in simulating high traffic flow, keeping track of accidents, and choosing the optimal path for vehicles has been reviewed. Furthermore, incorporating user-generated content and volunteered geographic information (VGI), considering the idea of the human as a sensor, together with IoT can be a future direction to provide a more accurate and up-to-date representation of the physical environment, especially for traffic control, according to the literature review. The results show there are some limitations in digital twins for traffic control. The current digital twins are only a 3D representation of the real world. The difficulty of synchronizing real and virtual world information is another challenge. Eventually, in order to employ this technology as effectively as feasible in urban management, the researchers must address these drawbacks.
According to the World Health Organization (WHO), breast cancer is among the most common cancers worldwide. Most of the anticancer agents have been showing a variety of side effects. Recently, bacterial proteins have been investigated as promising anticancer agents. Azurin is a bacterial cupredoxin protein secreted from Pseudomonas aeruginosa and has been reported as a potent multi-targeting anticancer agent, which makes it an appropriate candidate for drug delivery. Azurin may be delivered to cancer cells using different carriers like polymeric micro and nanoparticles. In the present study, azurin was extracted from the bacterial host and loaded into chitosan particles. Then its effect on MCF-7 cell line was investigated. Chitosan-azurin particles were made using the ion gelation method. Results showed that chitosan-azurin particles are about 200 nm, and the loading of the protein in particles did not affect its integrity. The MTT assay showed a significant reduction in cell viability in azurin and chitosan-azurin-treated cells. The toxicity level after 5 days was 63.78% and 82.53% for free azurin and chitosan-azurin-treated cells, respectively. It seems using an appropriate carrier system for anticancer proteins like azurin is a promising tool for developing low side effect anticancer agents.
The use of different energy sources and the worry of running out of some of them in the modern world have made factors such as environmental pollution and even energy sustainability vital. Vital resources for humanity include water, environment, food, and energy. As a result, building strong trust in these resources is crucial because of their interconnected nature. Sustainability in security of energy, water and food, generally decreases costs and improves durability. This study introduces and describes the components of a system named “Desktop Energetic Dark Greenhouse” in the context of the quadruple nexus of water, environment, food, and energy in urban life. This solution can concurrently serve to strengthen the sustainable security of water, environment, food, and energy. For home productivity, a small-scale version of this project was completed. The costs and revenues for this system have been determined after conducting an economic study from the viewpoints of the investor and the average household. The findings indicate that the capital return period is around five years from the investor’s perspective. The capital return on investment for this system is less than 4 years from the standpoint of the households. According to the estimates, this system annually supplies about 20 kg of vegetables or herbs, which means about one third of the annual needs of a family.
Human resource management practices are crucial, especially in the private healthcare sector. This could be because managing personnel in the healthcare sector is particularly challenging; therefore, meeting every employee's needs is crucial. Recently, the healthcare sector has experienced a scarcity and unbalanced distribution of employees due to job turnover. In addition, employee performance in the private healthcare sector has shown a slight drop due to the dissatisfaction of employees toward human resource practices such as unattractive compensation and rewards packages, bias in performance appraisal, lack of training and development, and many more. Therefore, this study is conducted to examine the impact of human resource practices on employees' job performance. Specifically, there are three main human resource practices observed as factors that contribute to an employee's job performance. The three human resource practices are compensation and benefits, performance appraisal, and training and development. There were four private hospitals operating in Selangor, Malaysia, chosen as a sample for this study. The private hospitals are KPJ Selangor Specialist Hospital, Columbia Asia Hospital Puchong, Assunta Hospital PJ, and Sunway Medical Centre. Out of these four private hospitals, there were about 291 employees working at the front desk: nurses, clinical workers, and administration staff were chosen as respondents in this study. The questionnaires were distributed to the respondents by hand. The data collected was analyzed using SPSS version 29. The findings indicate that employee job performance in Malaysian private hospitals is positively correlated with compensation and benefits. Employees feel motivated by compensation, which encourages them to increase their production and work more efficiently. Additionally, the findings also suggest that performance appraisal and training and development significantly contribute to employee job performance.
This study uses dynamic capability theory and a resource-based view to examine whether intellectual capital (human, relational, and structural capital) mediates entrepreneurial leadership and innovation success. Drawing on data from 422 senior-level employees working in Peruvian I.T. companies, the proposed relationships were analyzed using SmartPLS 4. Entrepreneurial leadership was found to foster employees’ innovative performance through the mediating role of human capital, relational capital, and structural capital. Practically, businesses often rely on innovation for survival and growth, so they should consider entrepreneurial leadership to create intellectual capital (human capital, relational capital and structural capital) for innovation performance. Businesses should provide entrepreneurial training that emphasizes role modeling intellectual capital and encourages employees to recognize and pursue entrepreneurial opportunities. With significantly limited research, the study contributes by investigating the interrelationship of entrepreneurial leadership, intellectual capital, and innovation performance. The study contributes to the Resource Based View and Dynamic Capability Theory by demonstrating how entrepreneurial leadership contributes to innovation performance through human capital, relational capital, and structural capital.
Copyright © by EnPress Publisher. All rights reserved.