In this paper, we modeled and simulated two tandem solar cell structures (a) and (b), in a two-terminal configuration based on inorganic and lead-free absorber materials. The structures are composed of sub-cells already studied in our previous work, where we simulated the impact of defect density and recombination rate at the interfaces, as well as that of the thicknesses of the charge transport and absorber layers, on the photovoltaic performance. We also studied the performance resulting from the use of different materials for the electron and hole transport layers. The two structures studied include a bottom cell based on the perovskite material CsSnI3 with a band gap energy of 1.3 eV and a thickness of 1.5 µm. The first structure has an upper sub-cell based on the CsSnGeI3 material with an energy of 1.5 eV, while the second has an upper sub-cell made of Cs2TiBr6 with a band gap energy of 1.6 eV. The theoretical model used to evaluate the photocurrent density, current-voltage characteristic, and photovoltaic parameters of the constituent sub-cells and the tandem device was described. Current matching analysis was performed to find the ideal combination of absorber thicknesses that allows the same current density to be shared. An efficiency of 29.8% was obtained with a short circuit current density Jsc = 19.92 mA/cm2, an open circuit potential Voc = 1.46 V and a form factor FF = 91.5% with the first structure (a), for a top absorber thickness of CsSnGeI3 of 190 nm, while an efficiency of 26.8% with Jsc = 16.74, Voc = 1.50 V and FF = 91.4% was obtained with the second structure (b), for a top absorber thickness of Cs2TiBr6 of 300 nm. The objective of this study is to develop efficient, low-cost, stable and non-toxic tandem devices based on lead-free and inorganic perovskite.
Abrupt changes in environmental temperature, wind and humidity can lead to great threats to human life safety. The Gansu marathon disaster of China highlights the importance of early warning of hypothermia from extremely low apparent temperature (AT). Here a deep convolutional neural network model together with a statistical downscaling framework is developed to forecast environmental factors for 1 to 12 h in advance to evaluate the effectiveness of deep learning for AT prediction at 1 km resolution. The experiments use data for temperature, wind speed and relative humidity in ERA-5 and the results show that the developed deep learning model can predict the upcoming extreme low temperature AT event in the Gansu marathon region several hours in advance with better accuracy than climatological and persistence forecasting methods. The hypothermia time estimated by the deep learning method with a heat loss model agrees well with the observed estimation at 3-hour lead. Therefore, the developed deep learning forecasting method is effective for short-term AT prediction and hypothermia warnings at local areas.
In most studies on hydroclimatic variability and trend, the notion of change point detection analysis of time series data has not been considered. Understanding the system is crucial for managing water resources sustainably in the future since it denotes a change in the status quo. If this happened, it is difficult to distinguish the time series data’s rising or falling tendencies in various areas when we look at the trend analysis alone. This study’s primary goal was to describe, quantify, and confirm the homogeneity and change point detection of hydroclimatic variables, including mean annual, seasonal, and monthly rainfall, air temperature, and streamflow. The method was employed using the four-homogeneity test, i.e., Pettitt’s test, Buishand’s test, standard normal homogeneity test, and von Neumann ratio test at 5% significance level. In order to choose the homogenous stations, the test outputs were divided into three categories: “useful”, “doubtful”, and “suspect”. The results showed that most of the stations for annual rainfall and air temperature were homogenous. It is found that 68.8% and 56.2% of the air temperature and rainfall stations respectively, were classified as useful. Whereas, the streamflow stations were classified 100% as useful. Overall, the change point detection analyses timings were found at monthly, seasonal, and annual time scales. In the rainfall time series, no annual change points were detected. In the air temperature time series except at Edagahamus station, all stations experienced an increasing change point while the streamflow time series experienced a decreasing change point except at Agulai and Genfel hydro stations. While alterations in streamflow time series without a noticeable change in rainfall time series recommend the change is caused by variables besides rainfall. Most probably the observed abrupt alterations in streamflow could result from alterations in catchment characteristics like the subbasin’s land use and cover. These research findings offered important details on the homogeneity and change point detection of the research area’s air temperature, rainfall, and streamflow necessary for the planers, decision-makers, hydrologists, and engineers for a better water allocation strategy, impact assessment and trend analyses.
Facing the digital economy era, considerable attention is paid to the importance of understanding the fundamental impact on the information and development of blended teaching methods regarding the higher education. For this reason, the purpose of this study is to answer the challenges brought by the digital economy era, identify the effective teaching methods which would be used in English Correspondence course in the era of digital economy, aiming to form the patterns of learning, provide high motivation, strength and knowledge, and most importantly contribute to the complex competences of future working. For further research, it is expected to be able to prove that using the blended teaching methods will effectively improve students’ communication skills and learning efficiency, enhance students’ learning experience and critical thinking skills.
Homosexuality, as a sexual orientation, encompasses individuals who experience love and sexual desire exclusively towards individuals of the same sex. Those who identify with this sexual orientation are referred to as homosexuals. Recognizing that various sexual orientations are equally valid, it is important to understand that homosexuality is a complex phenomenon. This paper aims to shed light on the current state of homosexuality in China. It holds universal significance not only for promoting cultural diversity, protecting human rights, strengthening the legal framework, and advancing society, but also for the well-being and livelihood of this vulnerable group.
With the progress of information technology, especially the widespread use of artificial intelligence technology, it has shown an important role in promoting economic and social development. Art and design in universities is a new discipline that combines modern technology with humanities and art. Only by emphasizing the development of science and technology, adapting to the requirements of the times, and closely integrating humanities and art with science and technology, can we gradually expand the educational channels for cultivating composite and innovative talents. Effectively organizing different types of scientific research activities, building a sound and comprehensive education system, plays an important role in adjusting teaching relationships, innovating teaching models, enhancing students' professional and comprehensive qualities, and improving their academic performance and employment competitiveness.
Copyright © by EnPress Publisher. All rights reserved.