This research study explores the addition of chromium (Cr6+) ions as a nucleating agent in the alumino-silicate-glass (ASG) system (i.e., Al2O3-SiO2-MgO-B2O3-K2O-F). The important feature of this study is the induction of nucleation/crystallization in the base glass matrix on addition of Cr6+ content under annealing heat treatment (600 ± 10 °C) only. The melt-quenched glass is found to be amorphous, which in the presence of Cr6+ ions became crystalline with a predominant crystalline phase, Spinel (MgCr2O4). Microstructural experiment revealed the development of 200–500 nm crystallite particles in Cr6+-doped glass-ceramic matrix, and such type microstructure governed the mechanical properties. The machinability of the Cr-doped glass-ceramic was thereby higher compared to base alumino-silicate glass (ASG). From the nano-indentation experiment, the Young’s modulus was estimated 25(±10) GPa for base glass and increased to 894(±21) GPa for Cr-doped glass ceramics. Similarly, the microhardness for the base glass was 0.6(±0.5) GPa (nano-indentation measurements) and 3.63(±0.18) GPa (micro-indentation measurements). And that found increased to 8.4(±2.3) (nano-indentation measurements) and 3.94(±0.20) GPa (micro-indentation measurements) for Cr-containing glass ceramic.
The purpose of this article is to determine the equitability of airport and university allocations throughout Ethiopian regional states based on the number of airports and institutions per 1 million people. According to the sample, the majority of respondents believed that university allocation in Ethiopia is equitable. In contrast, the majority of respondents who were asked about airports stated that there is an uneven distribution of airports across Ethiopia’s regional states. Hence, both interviewees and focus group discussants stated that there is a lack of equitable distribution of universities and airports across Ethiopia’s regional states. This paper contributes a lesson on how to create a comprehensive set of determining factors for equitable infrastructure allocation. It also provides a methodological improvement for assessing infrastructure equity and other broader implications across Ethiopian regional states.
With the development of social economy, the current urban traffic problem is more prominent. In order to solve this problem very well, the idea of establishing intelligent traffic management came into being. The establishment of intelligent traffic management, cannot do without the signal launch and reception. Therefore, how to set up some wireless signal transmitting device in time to travel on the road motor vehicles to send traffic information and how to achieve full coverage of the signal and signal stability is our article to discuss the issue. For the first question, we must separate the motorway and non-motorway from all roads. Motorway lanes are usually straight and long. While the bends are usually just sidewalks or bike lanes (non-motorized lanes). So the 121 road can be clustered analysis, clustering of the two indicators for each road length (the distance between the adjacent points) and the collection point of density (by drawing, you can observe the more curved the denser the road collection point, so the road curvature into the collection point of the intensity), the result of clustering can get 48 motor lanes. And then through regress function regression and data fitting to achieve an approximate description of each type of motor vehicle description model, so that each road in a given latitude (latitude) coordinates to determine the latitude (longitude) coordinates and the corresponding altitude. For the problem of two, according to the meaning of the road to know the signal strength is only related to the distance between the sampling point and the launch device, so you can 'the motor vehicle between the signal reception is relatively close to' this indicator into ' The average of the distance between all the sampling points and the transmitting device is close to '. By reading the data will be latitude and longitude conversion distance length, so that the maximum value as small as possible. The position of the launcher can be obtained by programming by MATLAB. When considering the altitude, only the position of the transmitting device can be changed. (9.7824,56.7720), and the position coordinates when considering the altitude are D (9.7459, 56.7586, 73.5645), and the position coordinate of the signal device is B (9.7824, 56.7720). For question three, note the effect of the original signal device A on the result. We still use the average of the distance between all the sampling points of the road and the launcher to characterize the stability of the signal reception. The average distance of all non-motorized trains to the original signal device A is first determined, and then the average distance of all non-motorized lanes from the new signal device B is set, and the signal acceptance strength of the non-motorized lane can be used to characterize. And then use the same method in question two to determine the location of the new signal transmitter. Finally, the coordinates of the position of the new signal device are E (9.7459,56.7586,73.5645).
Dushan county, Guizhou province, is located in the southernmost tip of Guizhou province. It belongs to the temperate climate of the subtropical region and is one of the centers of the karst east Asia area. The total area of the county is 242220 hectares, of which 169142 hectares are rocky desertifi cation or endangered desertification state. At present, the problem of rocky desertification has seriously affected the ecological environment of the county, which is one of the important factors that restrict the local social living standard and economic development. Therefore, it is of great significance to promote the social and economic development of the county by investigating and analyzing the spatial differentiation rules, present situation and harm of rocky desertification in Dushan county.
Salicylaldehyde imine transition metal catalyst is a kind of olefin polymerization catalyst that is widely used in the coordination of salicylaldehyde imine ligand and pre-transition metal. Salicylaldehyde imine ligands have the characteristic of easily inserting different substituents via organic synthesis. Therefore, the regulation of the polymerization activity, polymerization product, and product distribution can be achieved by changing the steric hindrance effect, the electronic effect, and the number of metal active sites near the catalytic active center. The development status of the transition metal catalyst of salicylaldehyde imide was summarized in this paper. The influence of the ligand structure of the salicylaldehyde imide transition metal catalyst on the catalytic performance, which involved the high selectivity of ethylene trimerization, ethylene/α-olefin, polar monomer copolymerization, ethylene polymerization production, ultra-high molecular weight polyethylene, and many other areas of olefin polymerization, was elaborated, providing references for further study and industrial applications of this catalyst.
Copyright © by EnPress Publisher. All rights reserved.