In agriculture, crop yield and quality are critical for global food supply and human survival. Challenges such as plant leaf diseases necessitate a fast, automatic, economical, and accurate method. This paper utilizes deep learning, transfer learning, and specific feature learning modules (CBAM, Inception-ResNet) for their outstanding performance in image processing and classification. The ResNet model, pretrained on ImageNet, serves as the cornerstone, with introduced feature learning modules in our IRCResNet model. Experimental results show our model achieves an average prediction accuracy of 96.8574% on public datasets, thoroughly validating our approach and significantly enhancing plant leaf disease identification.
In recent years, the pathological diagnosis of glomerular diseases typically involves the study of glomerular his-to pathology by specialized pathologists, who analyze tissue sections stained with Periodic Acid-Schiff (PAS) to assess tissue and cellular abnormalities. In recent years, the rapid development of generative adversarial networks composed of generators and discriminators has led to further developments in image colorization tasks. In this paper, we present a generative adversarial network by Spectral Normalization colorization designed for color restoration of grayscale images depicting glomerular cell tissue elements. The network consists of two structures: the generator and the discriminator. The generator incorporates a U-shaped decoder and encoder network to extract feature information from input images, extract features from Lab color space images, and predict color distribution. The discriminator network is responsible for optimizing the generated colorized images by comparing them with real stained images. On the Human Biomolecular Atlas Program (HubMAP)—Hacking the Kidney FTU segmentation challenge dataset, we achieved a peak signal-to-noise ratio of 29.802 dB, along with high structural similarity results as other colorization methods. This colorization method offers an approach to add color to grayscale images of glomerular cell tissue units. It facilitates the observation of physiological information in pathological images by doctors and patients, enabling better pathological-assisted diagnosis of certain kidney diseases.
Modelling and simulation have now become standard methods that serve to cut the economic costs of R&D for novel advanced systems. This paper introduces the study of modelling and simulation of the infrared thermography process to detect defects in the hydroelectric penstock. A 3-D penstock model was built in ANSYS version 19.2.0. Flat bottom holes of different sizes and depths were created on the inner surface of the model as an optimal scenario to represent the subsurface defect in the penstock. The FEM was applied to mimic the heat transfer in the proposed model. The model’s outer surface was excited at multiple excitation frequencies by a sinusoidal heat flux, and the thermal response of the model was presented in the form of thermal images to show the temperature contrast due to the presence of defects. The harmonic approximation method was applied to calculate the phase angle, and its relationship with respect to defect depth and defect size was also studied. The results confirmed that the FEM model has led to a better understanding of lock-in infrared thermography and can be used to detect subsurface defects in the hydroelectric penstock.
Vehicle detection stands out as a rapidly developing technology today and is further strengthened by deep learning algorithms. This technology is critical in traffic management, automated driving systems, security, urban planning, environmental impacts, transportation, and emergency response applications. Vehicle detection, which is used in many application areas such as monitoring traffic flow, assessing density, increasing security, and vehicle detection in automatic driving systems, makes an effective contribution to a wide range of areas, from urban planning to security measures. Moreover, the integration of this technology represents an important step for the development of smart cities and sustainable urban life. Deep learning models, especially algorithms such as You Only Look Once version 5 (YOLOv5) and You Only Look Once version 8 (YOLOv8), show effective vehicle detection results with satellite image data. According to the comparisons, the precision and recall values of the YOLOv5 model are 1.63% and 2.49% higher, respectively, than the YOLOv8 model. The reason for this difference is that the YOLOv8 model makes more sensitive vehicle detection than the YOLOv5. In the comparison based on the F1 score, the F1 score of YOLOv5 was measured as 0.958, while the F1 score of YOLOv8 was measured as 0.938. Ignoring sensitivity amounts, the increase in F1 score of YOLOv8 compared to YOLOv5 was found to be 0.06%.
This paper provides a comprehensive review of SURF (speeded up robust features) feature descriptor, commonly used technique for image feature extraction. The SURF algorithm has obtained significant popularity because to its robustness, efficiency, and invariance to various image transformations. In this paper, an in-depth analysis of the underlying principles of SURF, its key components, and its use in computer vision tasks such as object recognition, image matching, and 3D reconstruction are proposed. Furthermore, we discuss recent advancements and variations of the SURF algorithm and compare it with other popular feature descriptors. Through this review, the aim is to provide a clear understanding of the SURF feature descriptor and its significance in the area of computer vision.
Monitoring marine biodiversity is a challenge in some vulnerable and difficult-to-access habitats, such as underwater caves. Underwater caves are a great focus of biodiversity, concentrating a large number of species in their environment. However, most of the sessile species that live on the rocky walls are very vulnerable, and they are often threatened by different pressures. The use of these spaces as a destination for recreational divers can cause different impacts on the benthic habitat. In this work, we propose a methodology based on video recordings of cave walls and image analysis with deep learning algorithms to estimate the spatial density of structuring species in a study area. We propose a combination of automatic frame overlap detection, estimation of the actual extent of surface cover, and semantic segmentation of the main 10 species of corals and sponges to obtain species density maps. These maps can be the data source for monitoring biodiversity over time. In this paper, we analyzed the performance of three different semantic segmentation algorithms and backbones for this task and found that the Mask R-CNN model with the Xception101 backbone achieves the best accuracy, with an average segmentation accuracy of 82%.
Copyright © by EnPress Publisher. All rights reserved.