The new oil derivatives transportation scheme proposed by the 2013 Mexican Energy Reform allowed new participants to enter the sector. The new legal framework requires fulfilling many requirements and corresponding duties for the transportation of oil products. The Mexican government already has an institution dedicated to measuring the regulatory cost of each federal procedure. This work aims to quantify the regulatory costs associated with the procedures and their compliance to obtain permits for transporting oil products by truck. We use the standard cost method to measure these costs, considering all associated costs. The results showed that two government offices did not adequately measure these costs. They did not consider relevant information on frequency and opportunity costs, resulting in undervaluation and leading to wrong expectations. As a result of this research, we provide a more accurate way of estimating these costs, which brings greater certainty in the budgeting of these projects and, therefore, increases the probability of survival and success.
The goal of this research is to determine whether hospital financial performance is impacted by particular management accounting techniques, such as departmental revenue budgeting, specific costing, and departmental costing. We analyzed several sets of performance indicators for 146 hospitals whose management accounting adoption status is available. An outlier test was used to determine which data were outliers at the 0.1% significance level, and the results were then eliminated in order to see if any extremely outlier values (hospitals) were present for each indicator. To determine whether there were any noteworthy variations in the average values of the several performance measures, we employed a t-test (two-tailed probability). The results suggest that departmental revenue budgeting and departmental and specific costing improve hospital financial performance.
Implementing green retrofitting can save 50–90% of energy use in buildings built worldwide. Government policies in several developed countries have begun to increase the implementation of green retrofitting buildings in those countries, which must rise by up to 2.5% of the lifespan of buildings by 2030. By 2050, it is hoped that more than 85% of all buildings will have been retrofitted. The high costs of implementing green retrofitting amounting to 20% of the total initial construction costs, as well as the uncertainty of costs due to cost overruns are one of the main problems in achieving the implementation target in 2050. Therefore, increasing the accuracy of the costs of implementing green retrofitting is the best solution to overcome this. This research is limited to analyzing the factors that influence increasing the accuracy of green retrofitting costs based on WBS, BIM, and Information Systems. The results show that there are 10 factors affecting the cost accuracy of retrofitting or customizing high-rise office buildings, namely Energy Use Efficiency, Water Use Efficiency, Use of Environmentally Friendly Materials, Maintenance of Green Building Performance during the Use Period, Initial Survey, Project Information Documents, Cost Estimation Process, Resources, Legal, and Quantity Extraction applied. These factors are shown to increase the accuracy of green retrofitting costs.
The present study demonstrates the fabrication of heterogeneous ternary composite photocatalysts consisting of TiO2, kaolinite, and cement (TKCe),which is essential to overcome the practical barriers that are inherent to currently available photocatalysts. TKCe is prepared via a cost-effective method, which involves mechanical compression and thermal activation as major fabrication steps. The clay-cement ratio primarily determines TKCe mechanical strength and photocatalytic efficiency, where TKCe with the optimum clay-cement ratio, which is 1:1, results in a uniform matrix with fewer surface defects. The composites that have a clay-cement ratio below or above the optimum ratio account for comparatively low mechanical strength and photocatalytic activity due to inhomogeneous surfaces with more defects, including particle agglomeration and cracks. The TKCe mechanical strength comes mainly from clay-TiO2 interactions and TiO2-cement interactions. TiO2-cement interactions result in CaTiO3 formation, which significantly increases matrix interactions; however, the maximum composite performance is observed at the optimum titanate level; anything above or below this level deteriorates composite performance. Over 90% degradation rates are characteristic of all TKCe, which follow pseudo-first-order kinetics in methylene blue decontamination. The highest rate constant is observed with TKCe 1-1, which is 1.57 h−1 and is the highest among all the binary composite photocatalysts that were fabricated previously. The TKCe 1-1 accounts for the highest mechanical strength, which is 6.97 MPa, while the lowest is observed with TKCe 3-1, indicating that the clay-cement ratio has a direct relation to composite strength. TKCe is a potential photocatalyst that can be obtained in variable sizes and shapes, complying with real industrial wastewater treatment requirements.
Copyright © by EnPress Publisher. All rights reserved.