The economy, unemployment, and job creation of South Africa heavily depend on the growth of the agricultural sector. With a growing population of 60 million, there are approximately 4 million small-scale farmers (SSF) number, and about 36,000 commercial farmers which serve South Africa. The agricultural sector in South Africa faces challenges such as climate change, lack of access to infrastructure and training, high labour costs, limited access to modern technology, and resource constraints. Precision agriculture (PA) using AI can address many of these issues for small-scale farmers by improving access to technology, reducing production costs, enhancing skills and training, improving data management, and providing better irrigation infrastructure and transport access. However, there is a dearth of research on the application of precision agriculture using artificial intelligence (AI) by small scale farmers (SSF) in South Africa and Africa at large. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Bibliometric analysis guidelines were used to investigate the adoption of precision agriculture and its socio-economic implications for small-scale farmers in South Africa or the systematic literature review (SLR) compared various challenges and the use of PA and AI for small-scale farmers. The incorporation of AI-driven PA offers a significant increase in productivity and efficiency. Through a detailed systematic review of existing literature from inception to date, this study examines 182 articles synthesized from two major databases (Scopus and Web of Science). The systematic review was conducted using the machine learning tool R Studio. The study analyzed the literature review articled identified, challenges, and potential societal impact of AI-driven precision agriculture.
This study conducts a systematic literature review to analyze the integration of artificial intelligence (AI) within business excellence frameworks. An analysis of the findings in the reviewed articles yielded five major themes: AI technologies and intelligent systems; impact of AI on business operations, strategies, and models; AI-driven decision-making in infrastructure and policy contexts; new forms of innovation and competitiveness; and the impact of AI on organizational performance and value creation in infrastructure projects. The findings provide a comprehensive understanding of how AI can be integrated into organizational excellence emerged frameworks to address challenges in infrastructure governance, and sustainable development. Key questions addressed include: how AI affects consumer behavior and marketing strategies. What AI’s capabilities for businesses, especially marketing and digital strategies? How can organizations address the drivers and barriers to help make better use of AI in these business operations? Should organizations even do anything with these insights? These questions and more will be tackled throughout this discussion. This paper attempts to derive a comprehensive conceptual framework from several fields of human resources, operational excellence, and digital transformation, that can help guide organizations and policymakers in embedding AI into infrastructure and development initiatives. This framework will help practitioners navigate the complexities of AI integration, ensuring profitability and sustainable growth in a highly competitive landscape. By bridging the gap between AI technologies and development-related policy initiatives, this research contributes to the advancement of infrastructure governance, public management, and sustainable development.
Adequate sanitation is crucial for human health and well-being, yet billions worldwide lack access to basic facilities. This comprehensive review examines the emerging field of intelligent sanitation systems, which leverage Internet of Things (IoT) and advanced Artificial Intelligence (AI) technologies to address global sanitation challenges. The existing intelligent sanitation systems and applications is still in their early stages, marked by inconsistencies and gaps. The paper consolidates fragmented research from both academic and industrial perspectives based on PRISMA protocol, exploring the historical development, current state, and future potential of intelligent sanitation solutions. The assessment of existing intelligent sanitation systems focuses on system detection, health monitoring, and AI enhancement. The paper examines how IoT-enabled data collection and AI-driven analytics can optimize sanitation facility performance, predict system failures, detect health risks, and inform decision-making for sanitation improvements. By synthesizing existing research, identifying knowledge gaps, and discussing opportunities and challenges, this review provides valuable insights for practitioners, academics, engineers, policymakers, and other stakeholders. It offers a foundation for understanding how advanced IoT and AI techniques can enhance the efficiency, sustainability, and safety of the sanitation industry.
The COVID-19 pandemic provided a unique opportunity for educators and policymakers to reconsider education systems and rethink what is essential, necessary, and desirable for future generations. A sequential generic qualitative approach was used in this study. Based on the systematic literature review, a content analysis was conducted to identify dimensions that contribute toward higher education institutions sustainability. Subsequently, the Expert Opinion method that involved five professors holding key positions in respective universities from Malaysia, the Netherlands, India, and Bangladesh was applied to propose a post-COVID-19 sustainable framework. Four themes: 1) educational reform; 2) digital transformation; 3) resilience and change management; and 4) sustainability coupled with agility and flexibility formed the framework for HEIs’ sustainability during the post-COVID-19 pandemic. We propose that the themes be examined from an integrated perspective to ensure HEIs can be sustainable in the long run. Finally, other scholars are recommended to conduct a tracer study as well as develop qualitative instruments based on the themes and dimensions identified from the systematic literature review and the Expert Opinion Method to better understand the phenomenon of HEI sustainability.
As a product of the integration of AI technology and media, the debate surrounding the potential replacement of human anchors by AI anchors has persisted since their inception. This paper conducts a systematic literature review of research on AI anchors in China from 2000 to 2023, grounded in theories of personalization within the field of communication studies. The analysis aims to compare the differences in personalized representation between AI anchors and human anchors, summarizing the advancements, challenges, and future directions of AI anchor communication based on personality. This contribution seeks to enhance the existing knowledge base surrounding AI anchor research.
The concept of sustainable urban mobility has gained increasing attention in recent years due to the challenges posed by rapid urbanization and environmental degradation. The objective of this study is to explore the role of on-demand transportation in promoting sustainable urban mobility, incorporating insights from customer interests and demands through survey analysis. To fulfill this objective, a mixed-methods approach was employed, combining a systematic literature review with survey analysis of customer interests and demands regarding on-demand transportation services. This study combines a systematic literature review and a targeted survey to provide a comprehensive analysis of sustainable urban mobility, addressing gaps in understanding customer preferences alongside technological and financial considerations. The literature review encompassed various aspects including technological advancements, regulatory frameworks, user preferences, and environmental impacts. The survey analysis involved collecting data on customer preferences, satisfaction levels, and suggestions for improving on-demand transportation services. The findings of the study revealed significant insights into customer interests and demands regarding on-demand transportation services. Analysis of survey data indicated that factors such as convenience, affordability, reliability, and environmental sustainability were key considerations for customers when choosing on-demand transportation options. Additionally, the survey identified specific areas for improvement, including service coverage, accessibility, and integration with existing transportation networks. By providing flexible, efficient, and environmentally friendly transportation options, on-demand services have the potential to reduce congestions, improve air quality, and enhance overall urban livability.
Copyright © by EnPress Publisher. All rights reserved.