Background: Through the development of robust techniques and their comprehensive validation, cardiac magnetic resonance imaging (CMR) has developed a wide range of indications in its almost 25 years of clinical use. The recording of cardiac volumes and systolic ventricular function as well as the characterization of focal myocardial scars are now part of standard CMR imaging. Recently, the introduction of accelerated image acquisition technologies, the new imaging methods of myocardial T1 and T2 mapping and 4-D flow measurements, and the new post-processing technique of myocardial feature tracking have gained relevance. Method: This overview is based on a comprehensive literature search in the PubMed database on new CMR techniques and their clinical application. Results and conclusion: This article provides an overview of the latest technical developments in the field of CMR and their possible applications based on the most important clinical questions.
Problem: in recent years, new studies have been published on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields as used in magnetic resonance imaging (MRI). Many of these studies have not yet been incorporated into current safety recommendations. Method: scientific publications from 2010 onwards on the biological effects of static and electromagnetic fields of MRI were searched and evaluated. Results: new studies confirm older work that has already described effects of static magnetic fields on sensory organs and the central nervous system accompanied by sensory perception. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular organ. Recent studies on thermal effects of radiofrequency fields focused on the development of anatomically realistic body models and more accurate simulation of exposure scenarios. Recommendation for practice: strong static magnetic fields can cause unpleasant perceptions, especially dizziness. In addition, they can impair the performance of the medical personnel and thus potentially endanger patient safety. As a precaution, medical personnel should move slowly in the field gradient. High-frequency electromagnetic fields cause tissues and organs to heat up in patients. This must be taken into account in particular for patients with impaired thermoregulation as well as for pregnant women and newborns; exposure in these cases must be kept as low as possible.
Total factor productivity (TFP) is essential for disentangling the determinants of economic growth, productivity, and the standard of living. Understanding the variations in TFP, however, is greatly challenging because of the many assumptions that comprise the theoretical growth framework. In this paper, we aim to explore the determinants of TFP growth for countries at different stages of information and communication technology (ICT) development. To address the endogenous nature of the associated growth variables, we implement a three-stage-least (3SLS) square panel regression to improve the efficiency and asymptomatic accuracy of the estimators. We find that transmission channels, such as financial openness and trade globalization, have contributed substantially to growth in both advanced and developing countries. However, we also discover that greater financial openness can undermine a country’s TFP growth if the financial system is not sufficiently developed. When time horizons are decomposed into pre-ICT development and post-ICT development periods, a significant crowding-out effect is observed between ICT investment and financial openness in the pre-period, implying that the allocation of resources is critical for countries in the developing stage. Trade and finance policies that are adopted by advanced and developed countries might not be ideal for underdeveloped countries. Discretion in choosing adequate policies regarding financial integration and trade liberalization is advised for these emerging countries.
Improving educational outcomes in subjects such as English and mathematics remains a significant challenge for educators and policymakers. Strategic Human Resource Management (SHRM), which aligns human resource practices with organizational goals, has proven effective in business sectors but is less explored in educational contexts, especially from students’ perspectives. Existing studies often focus on teacher development, overlooking direct impacts on student performance. This research addresses the gap by examining how SHRM influences students’ performance in English and mathematics, incorporating student feedback to assess SHRM’s effectiveness. In the quantitative study, 200 students were analyzed to explore the relationship between SHRM practices and academic outcomes. The findings indicate that SHRM significantly affects student performance, with high predictive relevance and explanatory power in both subjects. The results suggest that strategic HR practices, such as professional development, performance management, and resource allocation, are critical to academic success. These insights provide valuable implications for educators and policymakers, highlighting the importance of integrating strategic HR management into educational frameworks to enhance curriculum design and resource distribution. The study demonstrates the broad applicability of SHRM across different academic disciplines, suggesting a need for comprehensive HR strategies that focus on both teacher and student performance. Future research should explore how SHRM influences educational outcomes and identify contextual factors that moderate its impact, enhancing effective HR practices in diverse academic settings.
In the process of X-ray transmission imaging, the mutual occlusion between structures will lead to the image information overlap, and the computed tomography (CT) method is often required to obtain the structure information at different depths, but with low efficiency. To address these problems, an X-ray focused on imaging algorithm based on multi-line scanning is proposed, which only requires the scene target to pass through the detection area along a straight line to extract multi-view information, and uses the optical field reconstruction theory to achieve the de-obscured reconstruction of the structure at a specified depth with high real-time. The results of multi-line scan and X-ray reconstruction of the target show that the proposed method can reconstruct the information of any specified depth layer, and it can perform fast imaging detection of the mutually occluded target structures and improve the recognition of the occluded targets, which has a good application prospect.
Copyright © by EnPress Publisher. All rights reserved.