There are several factors that generate postharvest losses of Citrus sinensis, but none have been focused on the central jungle of the Junín region of Peru. The objective of this research was to evaluate postharvest losses of Citrus sinensis in the province of Satipo, Junín region of Peru, considering the stages of the production chain. The methodology was applied to descriptive and cross-sectional design. A sample of 10 orange trees, 3 transport intermediaries and 5 traders selected for compliance with minimum volume and quality requirements were used. The °Brix, pH and acidity characteristics of the fruit were determined. Subsequently, absolute and percentage losses were quantified through direct observation, surveys and interviews. The main postharvest losses of Citrus sinensis were 1.50% in harvesting and detaching, 1.75% in transport to the collection center, 2.23% in storage and transport by intermediaries, and 2.90% in storage and sale by retailers. The overall loss was 8.12% throughout the production chain and US$5.75 per MT of C. sinensis harvested. The main damages found were mechanical and biological, caused by poor harvesting and packaging techniques, precarious storage and careless transport of the merchandise.
This research explores the impact of employee green behavior on green transformational leadership (GTL) and green human resource management (GHRM), and their subsequent effects on sustainable performance within organizations. Utilizing a sample of 482 environmental quality promotion departments across Thailand, the study employs stratified random sampling to ensure representative data collection. Analysis was conducted using SPSS software, applying Ordinary Least Squares (OLS) regression to test the hypothesized relationships between the variables. The findings reveal a positive and significant influence of employee green behavior on both GTL and GHRM. Additionally, both GTL and GHRM are found to positively correlate with sustainable performance, indicating that enhanced leadership and management practices in the environmental domain can lead to better sustainability outcomes. This research utilizes the Ability-Motivation-Opportunity (AMO) theory as its theoretical framework, illustrating how organizations can leverage strategic HRM practices to promote environmental consciousness and action among employees, thereby enhancing their long-term sustainability success. Implications of this study underscore the importance of integrating green practices into leadership and HRM strategies, advocating for targeted training programs and energy conservation measures to boost environmental awareness and performance in the workplace. This contributes to the literature on sustainable performance by providing empirical evidence of the pathways through which green HRM and transformational leadership foster a sustainable organizational environment.
Polyurethane is a multipurpose polymer with valuable mechanical, thermal, and chemical stability, and countless other physical features. Polyurethanes can be processed as foam, elastomer, or fibers. This innovative overview is designed to uncover the present state and opportunities in the field of polyurethanes and their nanocomposite sponges. Special emphasis has been given to fundamentals of polyurethanes and foam materials, related nanocomposite categories, and associated properties and applications. According to literature so far, adding carbon nanoparticles such as graphene and carbon nanotube influenced cell structure, overall microstructure, electrical/thermal conductivity, mechanical/heat stability, of the resulting polyurethane nanocomposite foams. Such progressions enabled high tech applications in the fields such as electromagnetic interference shielding, shape memory, and biomedical materials, underscoring the need of integrating these macromolecular sponges on industrial level environmentally friendly designs. Future research must be intended to resolve key challenges related to manufacturing and applicability of polyurethane nanocomposite foams. In particular, material design optimization, invention of low price processing methods, appropriate choice of nanofiller type/contents, understanding and control of interfacial and structure-property interplay must be determined.
Polyurethane is a multipurpose polymer with valuable mechanical, thermal, and chemical stability, and countless other physical features. Polyurethanes can be processed as foam, elastomer, or fibers. This innovative overview is designed to uncover the present state and opportunities in the field of polyurethanes and their nanocomposite sponges. Special emphasis has been given to fundamentals of polyurethanes and foam materials, related nanocomposite categories, and associated properties and applications. According to literature so far, adding carbon nanoparticles such as graphene and carbon nanotube influenced cell structure, overall microstructure, electrical/thermal conductivity, mechanical/heat stability, of the resulting polyurethane nanocomposite foams. Such progressions enabled high tech applications in the fields such as electromagnetic interference shielding, shape memory, and biomedical materials, underscoring the need of integrating these macromolecular sponges on industrial level environmentally friendly designs. Future research must be intended to resolve key challenges related to manufacturing and applicability of polyurethane nanocomposite foams. In particular, material design optimization, invention of low price processing methods, appropriate choice of nanofiller type/contents, understanding and control of interfacial and structure-property interplay must be determined.
Farm households in developing countries are often involved in a variety of livelihood income-generating activities to achieve basic needs and enhance food security. However, little attention has been given to investigating the effect of livelihood diversification strategies on the adoption of agricultural land management practices. This study explored the nexus between livelihood diversification and Agricultural Land Management (ALM) practices in the Southern Ethiopian Highlands. Data for this study were gathered through a structured questionnaire, interviews, and focus group discussions. A total of 423 sample respondents were selected by using multistage random sampling techniques. The data were analyzed using the Inverse Herfindahl Hirschman Diversity Index (IHHDI), the multinomial logit model (MNL), and the probit regression model. The findings of the study revealed that on-farm income activities are the most dominant livelihood income strategies (69.1%), followed by non-farm (21%) and off-farm (9.64%). The multinomial logit model analysis demonstrated that variables such as sex, education, family size, distance to market, land size, extension contact, membership in cooperatives, and household income were the major drivers of farmers income diversification activities (p<0.05). The results of the probit analysis indicated that income from crop production, daily labor work, rents from farmland, and farm assets have a positive and significant effect on households' decisions to implement ALM practices. In contrast, incomes from remittance and migrant sources have a negative but statistically significant impact on the adoption of ALM measures. The farm household sources of income-generating strategies substantially affected the adoption intensity of ALM measures. Income generated from the on-farm sector alone cannot be considered a core income-generating activity for households or a means of achieving food security. Therefore, land management policies and program implementations should consider farmers’ livelihood diversification and income-generating strategies. In addition, such interventions need to promote sustainable farming practices, enhance innovation, and related measures for the adoption of ALM measures to ensure land sustainability.
Copyright © by EnPress Publisher. All rights reserved.