This paper is the third in a series focused on bridging the gap between secondary and higher education. Our primary objective is to develop a robust theoretical framework for an innovative e-business model called the Undergraduate Study Programme Search System (USPSS). This system considers multiple criteria to reduce the likelihood of exam failure or the need for multiple retakes, while maximizing the chances of successful program completion. Testing of the proposed algorithm demonstrated that the Stochastic Gradient Boosted Regression Trees method outperforms the current method used in Lithuania for admitting applicants to 47 educational programs. Specifically, it is more accurate than the Probabilistic Neural Network for 25 programs, the Ensemble of Regression Trees for 24 programs, the Single Regression Tree for 18 programs, the Random Forest Regression for 16 programs, the Bayesian Additive Regression Trees for 13 programs, and the Regression by Discretization for 10 programs.
The aim of this research is to determine the incidence of socioeconomic variables in migration flows from the main countries of origin that form part of the international South-North migration corridor, such as Mexico, China, India, and the Philippines, during the 1990–2022 period. The independent variables considered are GDP per capita, unemployment, poverty, higher education, and public health, while the dependent variable is migration flows. An econometric panel data model is implemented. The tests conducted indicate that all variables have an integration order of I (1) and exhibit long-term equilibrium. The econometric models used, Dynamic Ordinary Least Squares (DOLS) and Fully Modified Ordinary Least Squares (FMOLS), reveal that unemployment and poverty had the strongest influence on migration flows. In both models, within this international migration corridor, GDP per capita, higher education, and health follow in order of importance.
This study systematically examines the literature of electric vehicle (EV) purchase intention and consumer behavior using a bibliometric method to unveil three main research questions: 1) identifying influential publications, authors, and journals; 2) analyzing the thematic evolution of research over time; and 3) identifying emerging research directions. The main objective is to provide a comprehensive understanding of the current state of knowledge and to guide future research in this evolving field. A comprehensive bibliometric analysis was conducted, using Scopus statistics analysis, R-Studio Biblioshiny and VOSviewer, comprising 687 publications authored by 1743 researchers representing 34 different countries with the dataset sourced from the Scopus database from 2010 to 2023. To achieve a nuanced understanding of the research landscape, a multifaceted approach was adopted, including detailed citation analysis, author co-citation analysis, keyword analysis, and thematic mapping. Through meticulous analysis, this study identifies the most influential publications, authors, and journals in the domain of EV purchase intentions and consumer behaviors. It also traces the evolution of themes over time and identifies emerging research directions, providing valuable insights into the trajectory and future avenues of inquiry within this field. The findings contribute to a deeper understanding of the dynamics shaping research in the realm of EVs. The insights gained contribute significantly to advancing knowledge in this crucial domain, offering theoretical insights and practical implications for policymakers, businesses, manufacturers, and academics.
This study aimed to measure the impact of implementing mechanisms of accounting data governance, represented by International Accounting Standards, internal auditing, external auditing, audit committees, disclosure and transparency, and performance evaluation, on the quality of financial reporting data for the commercial banks listed on the Amman Stock Exchange, totaling (15) banks. To achieve the objectives of this study, a descriptive-analytical approach was adopted by developing a questionnaire to collect the primary data measuring the study variables. The questionnaire was distributed to employees in the financial and control departments of these banks, with a total of (375) respondents from the total study population of (733) individuals. Appropriate statistical methods were used to analyze the data, test hypotheses, and the results of this study revealed a strong positive impact of five variables of accounting data governance mechanisms on achieving the quality of financial reporting data. These variables are ranked from highest to lowest in terms of the strength of impact and correlation with the quality of financial reports: disclosure and transparency, external auditing, International Accounting Standards, internal auditing, and audit committees. However, there was no impact of the performance evaluation governance variable on achieving the quality of financial reporting data. These results call on the management of commercial banks in the study to commit to the objective implementation of the requirements of accounting data governance mechanisms as stipulated by international professional assemblies.
The banking sector is a pillar of the world’s economic fabric and is today facing a major revolution due to the demands of sustainable development objectives and the evolution of sustainable finance tools. This article analyses the impact of green credit on commercial banks’ performance based on data from 10 commercial banks in China between 2012 and 2022. The study found that in the short term, the implementation of green credit has a positive effect on the income level of commercial banks’ intermediate activities and a moderating effect on their return on total assets and non-performing loan ratio.
Copyright © by EnPress Publisher. All rights reserved.