The paper examines the underlying science determining the performance of hybrid engines. It scrutinizes a full range of orthodox gasoline engine performance data, drawn from two sources, and how it would be modified by hybrid gasoline vehicle engine operation. The most significant change would be the elimination of the negative consequences of urban congestion, stop-start, and engine driving, in favour of a hybrid electric motor drive. At intermediate speeds there can be other instances where electric motors might give a more efficient drive than an engine. Hybrid operation is scrutinised and the electrical losses estimated. There also remains scope for improvements in engine combustion.
This research introduces a novel framework integrating stochastic finite element analysis (FEA) with advanced circular statistical methods to optimize heat pump efficiency under material uncertainties. The proposed methodologies and optimization focus on balancing the mean efficiency and variability by adjusting the concentration parameter of the Von Mises distribution, which models directional variability in thermal conductivity. The study highlights the superiority of the Von Mises distribution in achieving more consistent and efficient thermal performance compared to the uniform distribution. We also conducted a sensitivity analysis of the parameters for further insights. The results show that optimal tuning of the concentration parameter can significantly reduce efficiency variability while maintaining a mean efficiency above the desired threshold. This demonstrates the importance of considering both stochastic effects and directional consistency in thermal systems, providing robust and reliable design strategies.
The study aims to explore the role of artificial intelligence in enhancing the efficiency of public relations practitioners in Jordanian telecommunication companies. This study belongs to the category of descriptive research and adopted a survey methodology. The study surveyed (86) individuals representing the community of public relations practitioners and customer service personnel in the Jordanian telecommunication companies Zain and Orange.The study findings revealed that less experienced public relations personnel in Zain and Orange, with less than five years of experience, exhibit greater acceptance and enthusiasm for using artificial intelligence applications compared to their more experienced counterparts. The study also indicated that most public relations practitioners in Zain and Orange perceive artificial intelligence applications to have a moderate to significant contribution to achieving public relations functions and enhancing their work, reflecting technological advancement and the need to adapt to rapid changes in the business environment. Moreover, the study also discussed the limits, including that artificial intelligence can analyze large amounts of data related to the market and the audience, which provides further research and study.
This study explores the complex dynamics of handling augmented reality (AR) data in higher education in the United Arab Emirates (UAE). Although there is a growing interest in incorporating augmented reality (AR) to improve learning experiences, there are still issues in efficiently managing the data produced by these apps. This study attempts to understand the elements that affect AR data management by examining the relationship between the investigated variables: faculty readiness, technological limits, financial constraint, and student engagement on data management in higher education institutions in the UAE, building on earlier research that has identified these problems. The research analyzes financial constraints, technological infrastructure, and faculty preparation to understand their impact on AR data management. The study collected detailed empirical data on AR data management in UAE higher education environments using a quantitative research methods approach, surveys. The reasons for choosing this research method include cost-effectiveness, flexibility in questionnaire design, anonymity and confidentiality involved in the chosen methods. The results of this study are expected to enhance academic discourse by highlighting the obstacles and remedies to improving the efficiency of AR technology data management at higher education institutions. The findings are expected to enlighten decision-making in higher education institutions on maximizing AR technology’s benefits for improved learning outcomes.
Copyright © by EnPress Publisher. All rights reserved.